cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116088 Riordan array (1, x*(1+x)^2).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 1, 4, 1, 0, 0, 6, 6, 1, 0, 0, 4, 15, 8, 1, 0, 0, 1, 20, 28, 10, 1, 0, 0, 0, 15, 56, 45, 12, 1, 0, 0, 0, 6, 70, 120, 66, 14, 1, 0, 0, 0, 1, 56, 210, 220, 91, 16, 1, 0, 0, 0, 0, 28, 252, 495, 364, 120, 18, 1
Offset: 0

Views

Author

Paul Barry, Feb 04 2006

Keywords

Examples

			Triangle begins as:
  1;
  0, 1;
  0, 2, 1;
  0, 1, 4,  1;
  0, 0, 6,  6,  1;
  0, 0, 4, 15,  8,  1;
  0, 0, 1, 20, 28, 10,  1;
  0, 0, 0, 15, 56, 45, 12, 1;
		

Crossrefs

Row sums are A002478. Diagonal sums are A094686. Inverse is (-1)^(n-k) * A109971(n,k). Unsigned version of A109970.

Programs

  • GAP
    Flat(List([0..10], n->List([0..n], k-> Binomial(2*k, n-k) ))); # G. C. Greubel, May 09 2019
  • Magma
    [[Binomial(2*k, n-k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 09 2019
    
  • Mathematica
    Flatten[Table[Binomial[2k,n-k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Oct 22 2012 *)
  • PARI
    {T(n,k) = binomial(2*k, n-k)}; \\ G. C. Greubel, May 09 2019
    
  • Sage
    [[binomial(2*k, n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 09 2019
    

Formula

G.f.: 1/(1-x*y*(1+x)^2).
Number triangle T(n,k) = C(2*k, n-k) = C(n,k)*C(3*k,n)/C(3*k,k).