A116089 Riordan array (1, x*(1+x)^3).
1, 0, 1, 0, 3, 1, 0, 3, 6, 1, 0, 1, 15, 9, 1, 0, 0, 20, 36, 12, 1, 0, 0, 15, 84, 66, 15, 1, 0, 0, 6, 126, 220, 105, 18, 1, 0, 0, 1, 126, 495, 455, 153, 21, 1, 0, 0, 0, 84, 792, 1365, 816, 210, 24, 1, 0, 0, 0, 36, 924, 3003, 3060, 1330, 276, 27, 1
Offset: 0
Examples
Triangle begins as: 1; 0, 1; 0, 3, 1; 0, 3, 6, 1; 0, 1, 15, 9, 1; 0, 0, 20, 36, 12, 1; 0, 0, 15, 84, 66, 15, 1; 0, 0, 6, 126, 220, 105, 18, 1; 0, 0, 1, 126, 495, 455, 153, 21, 1; 0, 0, 0, 84, 792, 1365, 816, 210, 24, 1; 0, 0, 0, 36, 924, 3003, 3060, 1330, 276, 27, 1;
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (Rows 0 <= n <= 150).
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Binomial(3*k, n-k) ))); # G. C. Greubel, May 09 2019
-
Magma
[[Binomial(3*k, n-k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 09 2019
-
Mathematica
Flatten[Table[Binomial[3k,n-k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Feb 05 2012 *)
-
PARI
{T(n,k) = binomial(3*k, n-k)}; \\ G. C. Greubel, May 09 2019
-
Sage
[[binomial(3*k, n-k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 09 2019
Formula
G.f.: 1/(1-x*y*(1+x)^3).
Number triangle T(n,k) = C(3*k,n-k) = C(n,k)*C(4*k,n)/C(4*k,k).