cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116089 Riordan array (1, x*(1+x)^3).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 3, 6, 1, 0, 1, 15, 9, 1, 0, 0, 20, 36, 12, 1, 0, 0, 15, 84, 66, 15, 1, 0, 0, 6, 126, 220, 105, 18, 1, 0, 0, 1, 126, 495, 455, 153, 21, 1, 0, 0, 0, 84, 792, 1365, 816, 210, 24, 1, 0, 0, 0, 36, 924, 3003, 3060, 1330, 276, 27, 1
Offset: 0

Views

Author

Paul Barry, Feb 04 2006

Keywords

Examples

			Triangle begins as:
  1;
  0, 1;
  0, 3,  1;
  0, 3,  6,   1;
  0, 1, 15,   9,   1;
  0, 0, 20,  36,  12,    1;
  0, 0, 15,  84,  66,   15,    1;
  0, 0,  6, 126, 220,  105,   18,    1;
  0, 0,  1, 126, 495,  455,  153,   21,   1;
  0, 0,  0,  84, 792, 1365,  816,  210,  24,  1;
  0, 0,  0,  36, 924, 3003, 3060, 1330, 276, 27, 1;
		

Crossrefs

Row sums are A099234. Diagonal sums are A116090.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(3*k, n-k) ))); # G. C. Greubel, May 09 2019
  • Magma
    [[Binomial(3*k, n-k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 09 2019
    
  • Mathematica
    Flatten[Table[Binomial[3k,n-k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Feb 05 2012 *)
  • PARI
    {T(n,k) = binomial(3*k, n-k)}; \\ G. C. Greubel, May 09 2019
    
  • Sage
    [[binomial(3*k, n-k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 09 2019
    

Formula

G.f.: 1/(1-x*y*(1+x)^3).
Number triangle T(n,k) = C(3*k,n-k) = C(n,k)*C(4*k,n)/C(4*k,k).