cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A099234 A trisection of 1/(1-x-x^4).

Original entry on oeis.org

1, 1, 4, 10, 26, 69, 181, 476, 1252, 3292, 8657, 22765, 59864, 157422, 413966, 1088589, 2862617, 7527704, 19795288, 52054840, 136886433, 359964521, 946583628, 2489191330, 6545722210, 17213011605, 45264335853, 119029728628
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

A row of A099233.
Row sums of number triangle A116089. - Paul Barry, Feb 04 2006

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x (1+x)^3),{x,0,30}],x] (* or *) LinearRecurrence[{1,3,3,1},{1,1,4,10},30] (* Harvey P. Dale, Jun 05 2011 *)

Formula

G.f.: 1/(1-x*(1+x)^3).
a(n) = Sum_{k=0..n} binomial(3*(n-k), k).
a(n) = a(n-1)+3*a(n-2)+3*a(n-3)+a(n-4).
a(n) = A003269(3n).
a(n) = Sum_{k=0..n} C(3*k,n-k) = Sum_{k=0..n} C(n,k)*C(4*k,n)/C(4*k,k). - Paul Barry, Feb 04 2006
G.f.: 1/(G(0) - x) where G(k) = 1 - (2*k+3)*x/(2*k+1 - x*(k+2)*(2*k+1)/(x*(k+2) - (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2012

A116090 Expansion of 1/(1-x^2*(1+x)^3).

Original entry on oeis.org

1, 0, 1, 3, 4, 7, 16, 29, 52, 102, 194, 361, 685, 1301, 2452, 4633, 8771, 16577, 31327, 59241, 112004, 211724, 400285, 756786, 1430710, 2704817, 5113647, 9667590, 18277014, 34553692, 65325542, 123501151, 233485250, 441415867, 834519021
Offset: 0

Views

Author

Paul Barry, Feb 04 2006

Keywords

Comments

Diagonal sums of number triangle A116089.

Programs

  • Magma
    [(&+[Binomial(3*k, n-2*k): k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, May 09 2019
    
  • Mathematica
    CoefficientList[Series[1/(1-x^2(1+x)^3),{x,0,40}],x] (* or *) LinearRecurrence[{0,1,3,3,1},{1,0,1,3,4},40] (* Harvey P. Dale, Apr 28 2014 *)
  • PARI
    {a(n) = sum(k=0, floor(n/2), binomial(3*k, n-2*k))}; \\ G. C. Greubel, May 09 2019
    
  • Sage
    [sum(binomial(3*k, n-2*k) for k in (0..floor(n/2))) for n in (0..40)] # G. C. Greubel, May 09 2019

Formula

a(n) = a(n-2) + 3*a(n-3) + 3*a(n-4) + a(n-5).
a(n) = Sum_{k=0..floor(n/2)} C(3*k, n-2*k).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(4*k,n-k)/C(4*k,k).
Showing 1-2 of 2 results.