cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A375315 Expansion of (1 + x)/(1 - x^2*(1 + x)^3).

Original entry on oeis.org

1, 1, 1, 4, 7, 11, 23, 45, 81, 154, 296, 555, 1046, 1986, 3753, 7085, 13404, 25348, 47904, 90568, 171245, 323728, 612009, 1157071, 2187496, 4135527, 7818464, 14781237, 27944604, 52830706, 99879234, 188826693, 356986401, 674901117, 1275934888, 2412219633, 4560424135
Offset: 0

Views

Author

Seiichi Manyama, Aug 12 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec((1+x)/(1-x^2*(1+x)^3))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(3*k+1, n-2*k));

Formula

a(n) = a(n-2) + 3*a(n-3) + 3*a(n-4) + a(n-5).
a(n) = Sum_{k=0..floor(n/2)} binomial(3*k+1,n-2*k).
a(n) = A116090(n) + A116090(n-1).

A375317 Expansion of (1 + x)^2/(1 - x^2*(1 + x)^3).

Original entry on oeis.org

1, 2, 2, 5, 11, 18, 34, 68, 126, 235, 450, 851, 1601, 3032, 5739, 10838, 20489, 38752, 73252, 138472, 261813, 494973, 935737, 1769080, 3344567, 6323023, 11953991, 22599701, 42725841, 80775310, 152709940, 288705927, 545813094, 1031887518, 1950836005, 3688154521
Offset: 0

Views

Author

Seiichi Manyama, Aug 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x)^2/(1-x^2(1+x)^3),{x,0,40}],x] (* or *) LinearRecurrence[{0,1,3,3,1},{1,2,2,5,11},40] (* Harvey P. Dale, Mar 25 2025 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec((1+x)^2/(1-x^2*(1+x)^3))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(3*k+2, n-2*k));

Formula

a(n) = a(n-2) + 3*a(n-3) + 3*a(n-4) + a(n-5).
a(n) = Sum_{k=0..floor(n/2)} binomial(3*k+2,n-2*k).
a(n) = A375315(n) + A375315(n-1).

A116089 Riordan array (1, x*(1+x)^3).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 3, 6, 1, 0, 1, 15, 9, 1, 0, 0, 20, 36, 12, 1, 0, 0, 15, 84, 66, 15, 1, 0, 0, 6, 126, 220, 105, 18, 1, 0, 0, 1, 126, 495, 455, 153, 21, 1, 0, 0, 0, 84, 792, 1365, 816, 210, 24, 1, 0, 0, 0, 36, 924, 3003, 3060, 1330, 276, 27, 1
Offset: 0

Views

Author

Paul Barry, Feb 04 2006

Keywords

Examples

			Triangle begins as:
  1;
  0, 1;
  0, 3,  1;
  0, 3,  6,   1;
  0, 1, 15,   9,   1;
  0, 0, 20,  36,  12,    1;
  0, 0, 15,  84,  66,   15,    1;
  0, 0,  6, 126, 220,  105,   18,    1;
  0, 0,  1, 126, 495,  455,  153,   21,   1;
  0, 0,  0,  84, 792, 1365,  816,  210,  24,  1;
  0, 0,  0,  36, 924, 3003, 3060, 1330, 276, 27, 1;
		

Crossrefs

Row sums are A099234. Diagonal sums are A116090.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(3*k, n-k) ))); # G. C. Greubel, May 09 2019
  • Magma
    [[Binomial(3*k, n-k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 09 2019
    
  • Mathematica
    Flatten[Table[Binomial[3k,n-k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Feb 05 2012 *)
  • PARI
    {T(n,k) = binomial(3*k, n-k)}; \\ G. C. Greubel, May 09 2019
    
  • Sage
    [[binomial(3*k, n-k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 09 2019
    

Formula

G.f.: 1/(1-x*y*(1+x)^3).
Number triangle T(n,k) = C(3*k,n-k) = C(n,k)*C(4*k,n)/C(4*k,k).

A375314 a(n) = Sum_{k=0..floor(n/2)} binomial(4*k,n-2*k).

Original entry on oeis.org

1, 0, 1, 4, 7, 12, 30, 68, 137, 292, 644, 1380, 2936, 6324, 13625, 29216, 62701, 134784, 289547, 621708, 1335378, 2868620, 6161329, 13233352, 28424456, 61053608, 131135696, 281665480, 604991601, 1299461088, 2791106585, 5995016764, 12876698159, 27657841516
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2024

Keywords

Crossrefs

Cf. A116090.

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(4*k, n-2*k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x^2*(1+x)^4))

Formula

a(n) = a(n-2) + 4*a(n-3) + 6*a(n-4) + 4*a(n-5) + a(n-6).
G.f.: 1/(1 - x^2*(1 + x)^4).

A373741 Expansion of e.g.f. exp(x^2/2 * (1 + x)^3).

Original entry on oeis.org

1, 0, 1, 9, 39, 150, 1365, 13545, 105945, 918540, 10603845, 127806525, 1468823895, 18253765530, 257397445305, 3770163121725, 55637459903025, 866703333295800, 14468243658093225, 250223925107581425, 4426399346291497575, 81488489549760042750
Offset: 0

Views

Author

Seiichi Manyama, Jun 16 2024

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x^2/2 (1+x)^3],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 26 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(3*k, n-2*k)/(2^k*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(3*k,n-2*k)/(2^k * k!).
a(n) = (n-1)/2 * (2*a(n-2) + 9*(n-2)*a(n-3) + 12*(n-2)*(n-3)*a(n-4) + 5*(n-2)*(n-3)*(n-4)*a(n-5)).

A375307 a(n) = Sum_{k=0..floor(3*n/5)} binomial(3*n-3*k,2*k).

Original entry on oeis.org

1, 1, 4, 16, 52, 194, 685, 2452, 8771, 31327, 112004, 400285, 1430710, 5113647, 18277014, 65325542, 233485250, 834519021, 2982723523, 10660798289, 38103641048, 136189372297, 486765693153, 1739789499591, 6218325456983, 22225431015537, 79437750107600
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, 3*n\5, binomial(3*n-3*k, 2*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec((1-x-3*x^2)/(1-2*x-5*x^2-3*x^3+3*x^4-x^5))

Formula

a(n) = A116090(2*n).
a(n) = 2*a(n-1) + 5*a(n-2) + 3*a(n-3) - 3*a(n-4) + a(n-5).
G.f.: (1 - x - 3*x^2)/(1 - 2*x - 5*x^2 - 3*x^3 + 3*x^4 - x^5).
Showing 1-6 of 6 results.