cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A375315 Expansion of (1 + x)/(1 - x^2*(1 + x)^3).

Original entry on oeis.org

1, 1, 1, 4, 7, 11, 23, 45, 81, 154, 296, 555, 1046, 1986, 3753, 7085, 13404, 25348, 47904, 90568, 171245, 323728, 612009, 1157071, 2187496, 4135527, 7818464, 14781237, 27944604, 52830706, 99879234, 188826693, 356986401, 674901117, 1275934888, 2412219633, 4560424135
Offset: 0

Views

Author

Seiichi Manyama, Aug 12 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec((1+x)/(1-x^2*(1+x)^3))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(3*k+1, n-2*k));

Formula

a(n) = a(n-2) + 3*a(n-3) + 3*a(n-4) + a(n-5).
a(n) = Sum_{k=0..floor(n/2)} binomial(3*k+1,n-2*k).
a(n) = A116090(n) + A116090(n-1).

A375364 Expansion of 1/( (1 + x) * (1 - x^2*(1 + x)^3) ).

Original entry on oeis.org

1, -1, 2, 1, 3, 4, 12, 17, 35, 67, 127, 234, 451, 850, 1602, 3031, 5740, 10837, 20490, 38751, 73253, 138471, 261814, 494972, 935738, 1769079, 3344568, 6323022, 11953992, 22599700, 42725842, 80775309, 152709941, 288705926, 545813095, 1031887517, 1950836006
Offset: 0

Views

Author

Seiichi Manyama, Aug 13 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/((1+x)*(1-x^2*(1+x)^3)))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(3*k-1, n-2*k));

Formula

a(n) = -a(n-1) + a(n-2) + 4*a(n-3) + 6*a(n-4) + 4*a(n-5) + a(n-6).
a(n) = Sum_{k=0..floor(n/2)} binomial(3*k-1,n-2*k).
a(n) = A375365(n) + A375365(n-1).

A375365 Expansion of 1/( (1 + x)^2 * (1 - x^2*(1 + x)^3) ).

Original entry on oeis.org

1, -2, 4, -3, 6, -2, 14, 3, 32, 35, 92, 142, 309, 541, 1061, 1970, 3770, 7067, 13423, 25328, 47925, 90546, 171268, 323704, 612034, 1157045, 2187523, 4135499, 7818493, 14781207, 27944635, 52830674, 99879267, 188826659, 356986436, 674901081, 1275934925, 2412219595
Offset: 0

Views

Author

Seiichi Manyama, Aug 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1+x)^2(1-x^2(1+x)^3)),{x,0,40}],x] (* or *) LinearRecurrence[{-2,0,5,10,10,5,1},{1,-2,4,-3,6,-2,14},40] (* Harvey P. Dale, Aug 07 2025 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/((1+x)^2*(1-x^2*(1+x)^3)))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(3*k-2, n-2*k));

Formula

a(n) = -2*a(n-1) + 5*a(n-3) + 10*a(n-4) + 10*a(n-5) + 5*a(n-6) + a(n-7).
a(n) = Sum_{k=0..floor(n/2)} binomial(3*k-2,n-2*k).

A375321 Expansion of (1 + x)^2/(1 - x^3*(1 + x)^3).

Original entry on oeis.org

1, 2, 1, 1, 5, 10, 11, 13, 29, 57, 81, 111, 194, 352, 554, 827, 1348, 2303, 3739, 5843, 9382, 15519, 25317, 40431, 64933, 105863, 172321, 277696, 447272, 725140, 1177181, 1903186, 3072365, 4972113, 8057421, 13038606, 21075947, 34094041, 55199573, 89336141
Offset: 0

Views

Author

Seiichi Manyama, Aug 12 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec((1+x)^2/(1-x^3*(1+x)^3))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(3*k+2, n-3*k));

Formula

a(n) = a(n-3) + 3*a(n-4) + 3*a(n-5) + a(n-6).
a(n) = Sum_{k=0..floor(n/3)} binomial(3*k+2,n-3*k).
a(n) = A375319(n) + A375319(n-1).
Showing 1-4 of 4 results.