cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116090 Expansion of 1/(1-x^2*(1+x)^3).

Original entry on oeis.org

1, 0, 1, 3, 4, 7, 16, 29, 52, 102, 194, 361, 685, 1301, 2452, 4633, 8771, 16577, 31327, 59241, 112004, 211724, 400285, 756786, 1430710, 2704817, 5113647, 9667590, 18277014, 34553692, 65325542, 123501151, 233485250, 441415867, 834519021
Offset: 0

Views

Author

Paul Barry, Feb 04 2006

Keywords

Comments

Diagonal sums of number triangle A116089.

Programs

  • Magma
    [(&+[Binomial(3*k, n-2*k): k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, May 09 2019
    
  • Mathematica
    CoefficientList[Series[1/(1-x^2(1+x)^3),{x,0,40}],x] (* or *) LinearRecurrence[{0,1,3,3,1},{1,0,1,3,4},40] (* Harvey P. Dale, Apr 28 2014 *)
  • PARI
    {a(n) = sum(k=0, floor(n/2), binomial(3*k, n-2*k))}; \\ G. C. Greubel, May 09 2019
    
  • Sage
    [sum(binomial(3*k, n-2*k) for k in (0..floor(n/2))) for n in (0..40)] # G. C. Greubel, May 09 2019

Formula

a(n) = a(n-2) + 3*a(n-3) + 3*a(n-4) + a(n-5).
a(n) = Sum_{k=0..floor(n/2)} C(3*k, n-2*k).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(4*k,n-k)/C(4*k,k).