A116151 a(n) = smallest positive integer x satisfying the system of congruences { x == 1 (mod 2), x == 2 (mod 3), x == 3 (mod 5), x == 5 (mod 7), ..., x == A008578(n) (mod A008578(n+1)) }.
1, 5, 23, 173, 2273, 2273, 452723, 6578843, 113275433, 3682761353, 10152454583, 5024164707833, 249908523156563, 5726413266646343, 345878207890067123, 15103232990013860963, 1905274424667036455303, 111502614383457156882293
Offset: 1
Keywords
Examples
a(3)=23 because that is the smallest number such that n==1 (mod 2), n==2 (mod 3) and n == 3 (mod 5).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..350 (First 100 terms from T. D. Noe)
Crossrefs
Cf. A070198.
Programs
-
Maple
Primes:= [1,seq(ithprime(i),i=1..30)]: seq(chrem(Primes[1..k],Primes[2..k+1]),k=1..30); # Robert Israel, Oct 26 2018
-
Mathematica
Table[ChineseRemainder[Join[{1},Prime[Range[n-1]]],Prime[Range[n]]],{n,20}] (* Harvey P. Dale, Mar 30 2018 *)
-
PARI
{ a(n) = lift(chinese(vector(n,i,Mod(if(i==1,1,prime(i-1)),prime(i))))) }; vector(30,n,a(n)) \\ Max Alekseyev, Apr 16 2007
-
PARI
my(z=Mod(1,2)); forprime(x=3,100,z=chinese(z,Mod(precprime(x-1),x)); print1(lift(z), ", ")); \\ Fred Schneider, Oct 21 2007
Extensions
More terms from Max Alekseyev, Apr 16 2007
Edited by N. J. A. Sloane, May 05 2007
Further edited by N. J. A. Sloane, Jun 30 2008 at the suggestion of R. J. Mathar and Christian Bjartli.
Comments