A116365 Sum of the sizes of the tails below the Durfee squares of all partitions of n.
0, 1, 3, 6, 11, 20, 33, 56, 86, 136, 200, 301, 429, 621, 868, 1219, 1669, 2297, 3091, 4171, 5542, 7357, 9648, 12652, 16402, 21250, 27298, 35003, 44556, 56637, 71515, 90160, 113046, 141464, 176189, 219053, 271149, 335044, 412447, 506787, 620597
Offset: 1
Keywords
Examples
a(4) = 6 because the bottom tails of the five partitions of 4, namely [4], [3,1], [2,2], [2,1,1] and [1,1,1,1], are { }, [1], { }, [1,1] and [1,1,1], respectively, having total size 0+1+0+2+3=6.
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
- G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
Programs
-
Maple
g:=sum(z^(k^2)/product((1-z^j)*(1-(t*z)^j),j=1..k),k=1..10): dgdt1:=simplify(subs(t=1,diff(g,t))): dgdt1ser:=series(dgdt1,z=0,55): seq(coeff(dgdt1ser,z,n),n=1..48); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> add(k*add(b(k, d) *b(n-d^2-k, d), d=0..floor(sqrt(n))), k=0..n-1): seq(a(n), n=1..40); # Alois P. Heinz, Apr 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[k*Sum[b[k, d]*b[n-d^2-k, d], {d, 0, Floor[Sqrt[n]]}], {k, 0, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..n-1} k*A114087(n,k).
G.f.: [(d/dt){sum(q^(k^2)/product((1-q^j)(1-(tq)^j), j=1..k), k=1..oo)}]_{t=1}.
a(n) ~ (1/(8*sqrt(3)) - sqrt(3) * (log(2))^2 / (4*Pi^2)) * exp(Pi*sqrt(2*n/3)). - Vaclav Kotesovec, Jan 03 2019