cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116385 Expansion of e.g.f. Bessel_I(2,2x) + 2*Bessel_I(3,2x) + Bessel_I(4,2x).

Original entry on oeis.org

0, 0, 1, 2, 5, 10, 21, 42, 84, 168, 330, 660, 1287, 2574, 5005, 10010, 19448, 38896, 75582, 151164, 293930, 587860, 1144066, 2288132, 4457400, 8914800, 17383860, 34767720, 67863915, 135727830, 265182525, 530365050, 1037158320, 2074316640
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Comments

Third column of the Riordan array A116382.
Apart from its root term -1: central terms of the triangle in A051631: a(n) = A051631(n+1, [(n+1)/2]). - Reinhard Zumkeller, Nov 13 2011

Crossrefs

Cf. A001405.

Programs

  • Haskell
    a116385 n = a051631 (n+1) $ (n+1) `div` 2
    -- Reinhard Zumkeller, Nov 13 2011
    
  • Mathematica
    With[{nn=40},CoefficientList[Series[BesselI[2,2x]+2BesselI[3,2x]+ BesselI[ 4,2x],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Sep 14 2011 *)
  • PARI
    a(n)= binomial(n+3, (n+3)\2) - 3*binomial(n+1, (n+1)\2) \\ Bill McEachen, Dec 12 2022

Formula

E.g.f.: (d/dx)(Bessel_I(3,2x),x) + 2*Bessel_I(3,2x).
a(n) = C(n+1,floor((n-2)/2))*(1+(-1)^n)/2 + C(n,floor((n-3)/2))*(1-(-1)^n).
Conjecture: (n+4)*a(n) -2*a(n-1) +(-7*n-8)*a(n-2) +6*a(n-3) +12*(n-2)*a(n-4)=0. - R. J. Mathar, Jun 13 2014
a(n) = A001405(n+3) - 3*A001405(n+1) (from Eremin link). - Bill McEachen, Dec 12 2022
G.f.: (-1 - x + x^2 + B(x) - 3*x^2*B(x))/x^3, where B(x) is the g.f. of A001405. - Gennady Eremin, Oct 09 2023