A116484 Expansion of (-1+3*x)/(5*x^2 + 1 - 2*x).
-1, 1, 7, 9, -17, -79, -73, 249, 863, 481, -3353, -9111, -1457, 42641, 92567, -28071, -518977, -897599, 799687, 6087369, 8176303, -14084239, -69049993, -67678791, 209892383, 758178721, 466895527, -2857102551, -8048682737, -1811852719
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (2,-5).
Programs
-
Mathematica
CoefficientList[Series[(-1+3x)/(5x^2+1-2x),{x,0,40}],x] (* or *) LinearRecurrence[{2,-5},{-1,1},40] (* Harvey P. Dale, Jun 24 2013 *)
Formula
E.g.f.: exp(x)*(sin(2*x) - cos(2*x)). - Arkadiusz Wesolowski, Aug 31 2012
a(0)=-1, a(1)=1, a(n) = 2*a(n-1) - 5*a(n-2). - Harvey P. Dale, Jun 24 2013
a(n) = (1/2)*((-1 - i)*(1 + 2*i)^n - (1 - i)*(1 - 2*i)^n), n >= 0, where i=sqrt(-1). - Taras Goy, Apr 20 2019
Comments