A116503 Sum of the areas of the Durfee squares of all partitions of n.
1, 2, 3, 8, 13, 26, 39, 64, 98, 148, 216, 322, 455, 648, 904, 1258, 1711, 2336, 3128, 4198, 5548, 7330, 9569, 12496, 16146, 20836, 26674, 34098, 43273, 54846, 69072, 86848, 108627, 135612, 168527, 209066, 258271, 318482, 391321, 479946, 586709
Offset: 1
Examples
a(4) = 8 because the partitions of 4, namely [4], [3,1], [2,2], [2,1,1] and [1,1,1,1], have Durfee squares of sizes 1,1,2,1 and 1, respectively and 1^2+1^2+2^2+1^2+1^2=8.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
Programs
-
Maple
g:=sum(k^2*z^(k^2)/product((1-z^j)^2,j=1..k),k=1..10): gser:=series(g,z=0,52): seq(coeff(gser,z^n),n=1..45); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> add(k^2*add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2), k=1..floor(sqrt(n))): seq(a(n), n=1..40); # Alois P. Heinz, Apr 09 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum [k^2*Sum[b[m, k]*b[n - k^2 - m, k], {m, 0, n - k^2}], {k, 1, Sqrt[n]}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
Formula
G.f.: sum(k^2*z^(k^2)/product((1-z^j)^2, j=1..k), k=1..infinity).
a(n) ~ sqrt(3) * (log(2))^2 * exp(Pi*sqrt(2*n/3)) / (2*Pi^2). - Vaclav Kotesovec, Jan 03 2019
Comments