cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116503 Sum of the areas of the Durfee squares of all partitions of n.

Original entry on oeis.org

1, 2, 3, 8, 13, 26, 39, 64, 98, 148, 216, 322, 455, 648, 904, 1258, 1711, 2336, 3128, 4198, 5548, 7330, 9569, 12496, 16146, 20836, 26674, 34098, 43273, 54846, 69072, 86848, 108627, 135612, 168527, 209066, 258271, 318482, 391321, 479946, 586709
Offset: 1

Views

Author

Keywords

Comments

a(n) = sum(k^2*A115994(n,k), k=1..floor(sqrt(n))).

Examples

			a(4) = 8 because the partitions of 4, namely [4], [3,1], [2,2], [2,1,1] and [1,1,1,1], have Durfee squares of sizes 1,1,2,1 and 1, respectively and 1^2+1^2+2^2+1^2+1^2=8.
		

Crossrefs

Programs

  • Maple
    g:=sum(k^2*z^(k^2)/product((1-z^j)^2,j=1..k),k=1..10): gser:=series(g,z=0,52): seq(coeff(gser,z^n),n=1..45);
    # second Maple program:
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(k^2*add(b(m, k)*b(n-k^2-m, k),
                m=0..n-k^2), k=1..floor(sqrt(n))):
    seq(a(n), n=1..40);  # Alois P. Heinz, Apr 09 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum [k^2*Sum[b[m, k]*b[n - k^2 - m, k], {m, 0, n - k^2}], {k, 1, Sqrt[n]}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f.: sum(k^2*z^(k^2)/product((1-z^j)^2, j=1..k), k=1..infinity).
a(n) ~ sqrt(3) * (log(2))^2 * exp(Pi*sqrt(2*n/3)) / (2*Pi^2). - Vaclav Kotesovec, Jan 03 2019