cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116569 a(n) = (x^3 - x) / 6, where x is the genus of the modular curve X_0(p) for p = prime(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 4, 4, 10, 10, 20, 10, 20, 35, 20, 35, 56, 56, 56, 84, 84, 120, 84, 120, 165, 220, 220, 220, 286, 286, 286, 364, 455, 455, 560, 455, 680, 560, 680, 680, 816, 969, 1140, 969
Offset: 1

Views

Author

Roger L. Bagula, Mar 18 2006

Keywords

Comments

From Mia Boudreau, Jul 29 2025: (Start)
Previously named "Ono prime weight function divided by 6.".
See A001617 and A116563 for definition of genus of modular curve for X_0(n). (End)

Examples

			a(415) = 2218636 = (A116563(415)^3 - A116563(415)) / 6.
		

Crossrefs

Programs

  • Java
    long a(int n){
     long p = prime(n);
     long k = (p - switch((int)(p % 12)){
      case 1 -> 13; case 2 -> 5; case 3 -> 7; default -> -1;}) / 12;
     return k * (k - 1) * (k + 1) / 6;} // Mia Boudreau, Jul 29 2025
  • Mathematica
    g[1] = 1; g[2] = 1;
    g[n_] := (Prime[n] - 13)/12 /; Mod[Prime[n], 12] - 1 == 0;
    g[n_] := (Prime[n] - 5)/12 /; Mod[Prime[n], 12] - 5 == 0;
    g[n_] := (Prime[n] - 7)/12 /; Mod[Prime[n], 12] - 7 == 0;
    g[n_] := (Prime[n] + 1)/12 /; Mod[Prime[n], 12] - 11 == 0;
    Table[g[n]*(g[n]^2 - 1)/6, {n, 1, 50}]
  • PARI
    a(n) = {if (n < 3, g = 1, p = prime(n); m = p % 12; g = if (m==1, (p-13)/12, if (m==5, (p-5)/12, if (m==7, (p-7)/12, if (m==11, (p+1)/12))))); g*(g^2-1)/6;} \\ Michel Marcus, Apr 06 2018
    

Formula

a(n) = (A116563(n)^3 - A116563(n)) / 6. - Mia Boudreau, Jul 29 2025

Extensions

Offset corrected by Michel Marcus, Apr 06 2018