A116607 Sum of the divisors of n which are not divisible by 9.
1, 3, 4, 7, 6, 12, 8, 15, 4, 18, 12, 28, 14, 24, 24, 31, 18, 12, 20, 42, 32, 36, 24, 60, 31, 42, 4, 56, 30, 72, 32, 63, 48, 54, 48, 28, 38, 60, 56, 90, 42, 96, 44, 84, 24, 72, 48, 124, 57, 93, 72, 98, 54, 12, 72, 120, 80, 90, 60, 168, 62, 96, 32, 127, 84, 144, 68, 126, 96
Offset: 1
Examples
q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + 12*q^6 + 8*q^7 + 15*q^8 + 4*q^9 + ...
References
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 475 Entry 7(i).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012).
Programs
-
Mathematica
With[{c=9Range[20]},Table[Total[Complement[Divisors[i],c]],{i,80}]] (* Harvey P. Dale, Dec 19 2010 *) Drop[CoefficientList[Series[Sum[k * x^k /(1 - x^k) - 9*k * x^(9*k) / (1 - x^(9*k)) , {k, 1, 100}], {x, 0, 100}], x], 1] (* Indranil Ghosh, Mar 25 2017 *) f[p_, e_] := If[p == 3, 4, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
-
PARI
{a(n) = if( n<1, 0, sigma(n) - if( n%9==0, 9 * sigma(n/9)))}
-
PARI
{a(n) = polcoeff( sum( k=1, n, k * (x^k /(1 - x^k) - 9 * x^(9*k) /(1 - x^(9*k))), x * O(x^n)), n)}
-
PARI
q='q+O('q^66); Vec( (eta(q^3)^10/(eta(q)*eta(q^9))^3 - 1) /3 ) \\ Joerg Arndt, Mar 25 2017
-
Python
from sympy import divisors print([sum(i for i in divisors(n) if i%9) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017
Formula
Expansion of (eta(q^3)^10 / (eta(q) eta(q^9))^3 - 1) / 3 in powers of q.
a(n) is multiplicative with a(3^e) = 4 if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f.: Sum_{k>0} k * x^k /(1 - x^k) - 9*k * x^(9*k) / (1 - x^(9*k)).
L.g.f.: log(Product_{k>=1} (1 - x^(9*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
Sum_{k=1..n} a(k) ~ (2*Pi^2/27) * n^2. - Amiram Eldar, Oct 04 2022