A116637 G.f. satisfies: A(x) = x/series_reversion(x/G(x)) where A(x) + A(-x) = 2*G(x^2) and G(x) is the g.f. of A046646.
1, 2, 2, 4, 6, 14, 24, 60, 110, 286, 546, 1456, 2856, 7752, 15504, 42636, 86526, 240350, 493350, 1381380, 2861430, 8064030, 16829280, 47682960, 100134216, 284997384, 601661144, 1719031840, 3645533040, 10450528048, 22249511328, 63967345068
Offset: 0
Keywords
Examples
A(x) = 1 + 2*x + 2*x^2 + 4*x^3 + 6*x^4 + 14*x^5 + 24*x^6 + 60*x^7 +... log(A(x)) = 1*2*x + 2*4/3*x^3 + 7*6/5*x^5 + 30*8/7*x^7 + 143*10/9*x^9 +...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
k := Floor[(n - 1)/2]; Table[If[n == 0, 1, If[Mod[n, 2] == 1, 2*(3*k + 1)!/((k + 1)!*(2*k + 1)!), 2*(3*k + 3)!/((k + 1)!*(2*k + 3)!)]], {n, 0, 50}] (* G. C. Greubel, Nov 21 2017 *)
-
PARI
{a(n)=local(k=(n-1)\2);if(n==0,1,if(n%2==1, 2*(3*k+1)!/((k+1)!*(2*k+1)!), 2*(3*k+3)!/((k+1)!*(2*k+3)!)))} for(n=0,40,print1(a(n),", "))
-
PARI
{a(n)=if(n<1, n==0, 2*(n+n\2)!/ (n\2+n%2)!/ (n+1-(n%2))!)} /* Michael Somos, Feb 22 2006 */
Formula
a(2*n+1) = 2*(3*n+1)!/((n+1)!*(2*n+1)!) = 2*A006013(n), with a(0)=1 and a(2*n+2) = 2*(3*n+3)!/((n+1)!*(2*n+3)!) = 2*A001764(n+1).
G.f. satisfies: A(x) = G(x/A(x)) and A(x*G(x)) = G(x), where G(x) is the g.f. of A046646.
G.f. satisfies: A(x) = 1/A(-x) since log(A(x)) = Sum_{n>=0} 2*A006013(n)*(n+1)/(2n+1)*x^(2n+1) is an odd function.
G.f.: (1+v)/(1-v) where v=2*sqrt(3)*sin(asin(3*sqrt(3)*x/2)/3)/3. - Paul Barry, Jul 07 2007
Conjecture: 4*n*(n+1)*(3*n-1)*a(n) -36*n*a(n-1) -3*(3*n-5)*(3*n+2)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Jun 22 2016