cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116637 G.f. satisfies: A(x) = x/series_reversion(x/G(x)) where A(x) + A(-x) = 2*G(x^2) and G(x) is the g.f. of A046646.

Original entry on oeis.org

1, 2, 2, 4, 6, 14, 24, 60, 110, 286, 546, 1456, 2856, 7752, 15504, 42636, 86526, 240350, 493350, 1381380, 2861430, 8064030, 16829280, 47682960, 100134216, 284997384, 601661144, 1719031840, 3645533040, 10450528048, 22249511328, 63967345068
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2006

Keywords

Examples

			A(x) = 1 + 2*x + 2*x^2 + 4*x^3 + 6*x^4 + 14*x^5 + 24*x^6 + 60*x^7 +...
log(A(x)) = 1*2*x + 2*4/3*x^3 + 7*6/5*x^5 + 30*8/7*x^7 + 143*10/9*x^9 +...
		

Crossrefs

Programs

  • Mathematica
    k := Floor[(n - 1)/2]; Table[If[n == 0, 1, If[Mod[n, 2] == 1, 2*(3*k + 1)!/((k + 1)!*(2*k + 1)!), 2*(3*k + 3)!/((k + 1)!*(2*k + 3)!)]], {n, 0, 50}] (* G. C. Greubel, Nov 21 2017 *)
  • PARI
    {a(n)=local(k=(n-1)\2);if(n==0,1,if(n%2==1, 2*(3*k+1)!/((k+1)!*(2*k+1)!), 2*(3*k+3)!/((k+1)!*(2*k+3)!)))}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    {a(n)=if(n<1, n==0, 2*(n+n\2)!/ (n\2+n%2)!/ (n+1-(n%2))!)} /* Michael Somos, Feb 22 2006 */

Formula

a(2*n+1) = 2*(3*n+1)!/((n+1)!*(2*n+1)!) = 2*A006013(n), with a(0)=1 and a(2*n+2) = 2*(3*n+3)!/((n+1)!*(2*n+3)!) = 2*A001764(n+1).
G.f. satisfies: A(x) = G(x/A(x)) and A(x*G(x)) = G(x), where G(x) is the g.f. of A046646.
G.f. satisfies: A(x) = 1/A(-x) since log(A(x)) = Sum_{n>=0} 2*A006013(n)*(n+1)/(2n+1)*x^(2n+1) is an odd function.
G.f.: (1+v)/(1-v) where v=2*sqrt(3)*sin(asin(3*sqrt(3)*x/2)/3)/3. - Paul Barry, Jul 07 2007
Conjecture: 4*n*(n+1)*(3*n-1)*a(n) -36*n*a(n-1) -3*(3*n-5)*(3*n+2)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Jun 22 2016