cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116666 Triangle, row sums = number of edges in n-dimensional hypercubes.

Original entry on oeis.org

1, 1, 3, 1, 6, 5, 1, 9, 15, 7, 1, 12, 30, 28, 9, 1, 15, 50, 70, 45, 11, 1, 18, 75, 140, 135, 66, 13, 1, 21, 105, 245, 315, 231, 91, 15, 1, 24, 140, 392, 630, 616, 364, 120, 17, 1, 27, 180, 588, 1134, 1386, 1092, 540, 153, 19, 1, 30, 225, 840, 1890, 2772
Offset: 1

Views

Author

Gary W. Adamson, Feb 22 2006

Keywords

Comments

Terms in the array rows tend to A001787, number of edges in n-dimensional hypercubes: 1, 4, 12, 32, 80, 192, 448... Row sums of the sequence also = A001787.

Examples

			First few rows of the array are:
1 1 1 1 1...
1 4 7 10 13...
1 4 12 25 43...
1 4 12 32 71...
1 4 12 32 80...
...
Then take differences of columns which become rows of the triangle:
1;
1, 3;
1, 6, 5;
1, 9, 15, 7;
1, 12, 30, 28, 9;
1, 15, 50, 70, 45, 11;
1, 18, 75, 140, 135, 66, 13;
1, 21, 105, 245, 315, 231, 91, 15;
...
		

Crossrefs

Cf. A001787.
Cf. A007318, A005408, A002457 (central terms).

Programs

  • GAP
    Flat(List([0..100],n->List([1..n+1],k->Binomial(n,k-1)*(2*k-1)))); # Muniru A Asiru, Jan 30 2018
  • Haskell
    a116666 n k = a116666_tabl !! (n-1) !! (k-1)
    a116666_row n = a116666_tabl !! (n-1)
    a116666_tabl = zipWith (zipWith (*)) a007318_tabl a158405_tabl
    -- Reinhard Zumkeller, Nov 02 2013
    
  • Magma
    /* As triangle */ [[(2*k+1)*Binomial(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 29 2018
    
  • Maple
    seq(seq(binomial(n,k-1)*(2*k-1), k=1..n+1),n=0..100); # Muniru A Asiru, Jan 30 2018
  • Mathematica
    Table[Binomial[n,k]*(2*k+1), {n,0,10}, {k,0,n}] (* G. C. Greubel, Jan 29 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n,k)*(2*k+1), ", "))) \\ G. C. Greubel, Jan 29 2018
    

Formula

From an array, rows = binomial transforms of (1,0,0,0...); (1,3,0,0,0...); (1,3,5,0,0,0...); difference rows of the columns become rows of the triangle.
T(n,k) = binomial(n,k-1) * (2*k - 1), 1 <= k <= n. - Reinhard Zumkeller, Nov 02 2013