A116680 Number of even parts in all partitions of n into distinct parts.
0, 0, 1, 1, 1, 2, 4, 5, 5, 8, 11, 14, 18, 23, 29, 37, 44, 55, 69, 83, 102, 124, 148, 178, 213, 253, 300, 356, 421, 494, 582, 680, 793, 926, 1074, 1246, 1446, 1668, 1922, 2215, 2545, 2918, 3345, 3823, 4366, 4982, 5668, 6445, 7321, 8300, 9401, 10639, 12021, 13566
Offset: 0
Keywords
Examples
a(9)=8 because in the partitions of 9 into distinct parts, namely, [9], [8,1], [7,2], [6,3], [6,2,1], [5,4], [5,3,1], and [4,3,2], we have a total of 8 even parts. [edited by _Rishi Advani_, Jun 07 2019]
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- D. Herden, M. R. Sepanski, J. Stanfill, C. C. Hammon, J. Henningsen, H. Ickes, J. M. Menendez, T. Poe, I. Ruiz, and E. L. Smith, Counting the parts divisible by k in all the partitions of n whose parts have multiplicity less than k, arXiv:2010.02788 [math.CO], 2020. See also Integers (2022) Vol. 22, #A49.
- Runqiao Li and Andrew Y. Z. Wang, On the combinatorics of the number of even parts in all partitions with distinct parts, The Raman. J. 56 (2021) 712-727
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Integers(), 3*m); [0,0] cat Coefficients(R!( (&*[1+x^j: j in [1..4*m]])*(&+[x^(2*k)/(1+x^(2*k)): k in [1..2*m]]) )); // G. C. Greubel, Jun 07 2019 -
Maple
f:=product(1+x^j,j=1..70)*sum(x^(2*j)/(1+x^(2*j)),j=1..40): fser:=series(f,x=0,65): seq(coeff(fser,x,n),n=0..60); # second Maple program: b:= proc(n, i) option remember; `if`(i*(i+1)/2
p+`if`(i::odd, 0, [0, p[1]]))(b(n-i, min(n-i, i-1))))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..60); # Alois P. Heinz, May 24 2022 -
Mathematica
With[{m = 25}, CoefficientList[Series[Product[1+x^j, {j,1,4*m}]* Sum[x^(2*k)/(1+x^(2*k)), {k,1,2*m}], {x,0,3*m}], x]] (* G. C. Greubel, Jun 07 2019 *)
-
PARI
my(m=25); my(x='x+O('x^(3*m))); concat([0, 0], Vec( prod(j=1, 4*m, 1+x^j)*sum(k=1, 2*m, x^(2*k)/(1+x^(2*k))) )) \\ G. C. Greubel, Jun 07 2019
-
Sage
m = 25 R = PowerSeriesRing(ZZ, 'x') x = R.gen().O(3*m) s = product(1+x^j for j in (1..4*m))*sum(x^(2*k)/(1+x^(2*k)) for k in (1..2*m)) [0, 0] + s.coefficients() # G. C. Greubel, Jun 07 2019
Formula
a(n) = Sum_{k >= 0} k*A116679(n,k).
G.f.: (Product_{j >= 1} (1+x^j)) * (Sum_{k >= 1} x^(2*k)/(1+x^(2*k))).
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 26 2018