A116699 Number of permutations of length n which avoid the patterns 123 and 4312.
1, 2, 5, 13, 30, 61, 112, 190, 303, 460, 671, 947, 1300, 1743, 2290, 2956, 3757, 4710, 5833, 7145, 8666, 10417, 12420, 14698, 17275, 20176, 23427, 27055, 31088, 35555, 40486, 45912, 51865, 58378, 65485, 73221, 81622, 90725, 100568, 111190, 122631, 134932
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Christian Bean, Bjarki Gudmundsson, Henning Ulfarsson, Automatic discovery of structural rules of permutation classes, arXiv:1705.04109 [math.CO], 2017.
- Lara Pudwell, Systematic Studies in Pattern Avoidance, 2005.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(n^4 + 2*n^3 - 13*n^2 + 34*n)/24: n in [1..45]]; // Vincenzo Librandi, Nov 01 2014
-
Mathematica
LinearRecurrence[{5,-10,10,-5,1}, {1,2,5,13,30}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *) CoefficientList[Series[(2 x^3 - 5 x^2 + 3 x - 1)/(x - 1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 01 2014 *)
-
PARI
for(n=1,100,print1((n^4 + 2*n^3 - 13*n^2 + 34*n)/24",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 22 2008
Formula
G.f.: x*(2*x^3 - 5*x^2 + 3*x - 1)/(x-1)^5.
a(n) = (n^4 + 2*n^3 - 13*n^2 + 34*n)/24. - Franklin T. Adams-Watters, Sep 16 2006
Partial sums of A105163. - Levi R. Self (levi.r.self(AT)gmail.com), Aug 04 2007
Binomial transform of [1, 1, 2, 3, 1, 0, 0, 0, ...]. - Gary W. Adamson, Oct 23 2007
Extensions
Edited by N. J. A. Sloane, Mar 16 2008
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 22 2008
Comments