cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116699 Number of permutations of length n which avoid the patterns 123 and 4312.

Original entry on oeis.org

1, 2, 5, 13, 30, 61, 112, 190, 303, 460, 671, 947, 1300, 1743, 2290, 2956, 3757, 4710, 5833, 7145, 8666, 10417, 12420, 14698, 17275, 20176, 23427, 27055, 31088, 35555, 40486, 45912, 51865, 58378, 65485, 73221, 81622, 90725, 100568, 111190, 122631, 134932
Offset: 1

Views

Author

Lara Pudwell, Feb 26 2006

Keywords

Comments

Also number of permutations of length n which avoid the patterns 321, 2134 (reverse symmetry); or 321, 1243 (complement symmetry); etc.

Programs

  • Magma
    [(n^4 + 2*n^3 - 13*n^2 + 34*n)/24: n in [1..45]]; // Vincenzo Librandi, Nov 01 2014
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1}, {1,2,5,13,30}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
    CoefficientList[Series[(2 x^3 - 5 x^2 + 3 x - 1)/(x - 1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 01 2014 *)
  • PARI
    for(n=1,100,print1((n^4 + 2*n^3 - 13*n^2 + 34*n)/24",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 22 2008
    

Formula

G.f.: x*(2*x^3 - 5*x^2 + 3*x - 1)/(x-1)^5.
a(n) = (n^4 + 2*n^3 - 13*n^2 + 34*n)/24. - Franklin T. Adams-Watters, Sep 16 2006
Partial sums of A105163. - Levi R. Self (levi.r.self(AT)gmail.com), Aug 04 2007
Binomial transform of [1, 1, 2, 3, 1, 0, 0, 0, ...]. - Gary W. Adamson, Oct 23 2007

Extensions

Edited by N. J. A. Sloane, Mar 16 2008
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 22 2008