A116952 a(n) = 3*a(n-1) + 5 with a(0) = 1.
1, 8, 29, 92, 281, 848, 2549, 7652, 22961, 68888, 206669, 620012, 1860041, 5580128, 16740389, 50221172, 150663521, 451990568, 1355971709, 4067915132, 12203745401, 36611236208, 109833708629, 329501125892, 988503377681, 2965510133048, 8896530399149
Offset: 0
Examples
The second term is 8 since a(1) = 3*a(0) + 5 = 3*1 + 5 = 8.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Programs
-
Maple
a:=n->(7*3^n-5)/2: seq(a(n),n=0..27); a[0]:=1: for n from 1 to 27 do a[n]:=3*a[n-1]+5 od: seq(a[n],n=0..27);
-
Mathematica
a[0] := 1; a[n_] := 3a[n - 1] + 5; Table[a[n], {n, 0, 30}] NestList[3#+5&,1,30] (* or *) LinearRecurrence[{4,-3},{1,8},30] (* Harvey P. Dale, Jul 20 2018 *)
Formula
a(n) = (7/2)*3^n-(5/2). - Emeric Deutsch, Apr 01 2006
a(n) = 4*a(n-1)-3*a(n-2). G.f.: (4*x+1) / ((x-1)*(3*x-1)). - Colin Barker, Jul 18 2013
Extensions
More terms from Emeric Deutsch and Stefan Steinerberger, Apr 01 2006
More terms from Colin Barker, Jul 18 2013