A134931
a(n) = (5*3^n-3)/2.
Original entry on oeis.org
1, 6, 21, 66, 201, 606, 1821, 5466, 16401, 49206, 147621, 442866, 1328601, 3985806, 11957421, 35872266, 107616801, 322850406, 968551221, 2905653666, 8716961001, 26150883006, 78452649021, 235357947066, 706073841201, 2118221523606
Offset: 0
-
[(5*3^n-3)/2: n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
-
seq((5*3^n-3)/2, n= 0..25); # Gary Detlefs, Jun 22 2010
-
a=1; lst={a}; Do[a=a*3+3; AppendTo[lst,a], {n,0,100}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 25 2008 *)
Table[(5 3^n - 9)/6, {n, 20}] (* Eric W. Weisstein, Dec 01 2017 *)
(5 3^Range[20] - 9)/6 (* Eric W. Weisstein, Dec 01 2017 *)
LinearRecurrence[{4, -3}, {1, 6}, 20] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[(1 + 2 x)/(1 - 4 x + 3 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
a(n) = (5*3^n-3)/2; /* Joerg Arndt, Apr 14 2013 */
A237930
a(n) = 3^(n+1) + (3^n-1)/2.
Original entry on oeis.org
3, 10, 31, 94, 283, 850, 2551, 7654, 22963, 68890, 206671, 620014, 1860043, 5580130, 16740391, 50221174, 150663523, 451990570, 1355971711, 4067915134, 12203745403, 36611236210, 109833708631, 329501125894, 988503377683, 2965510133050, 8896530399151
Offset: 0
Ternary....................Decimal
10...............................3
101.............................10
1011............................31
10111...........................94
101111.........................283
1011111........................850
10111111......................2551
101111111.....................7654, etc.
-
[3^(n+1) + (3^n-1)/2: n in [0..40]]; // Vincenzo Librandi, Jan 09 2020
-
(* Start from Eric W. Weisstein, Mar 13 2018 *)
Table[(7 3^n - 1)/2, {n, 0, 20}]
(7 3^Range[0, 20] - 1)/2
LinearRecurrence[{4, -3}, {10, 31}, {0, 20}]
CoefficientList[Series[(3 - 2 x)/((x - 1) (3 x - 1)), {x, 0, 20}], x]
(* End *)
-
Vec((3 - 2*x) / ((1 - x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Nov 27 2019
A225918
a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+3) and a(1) = 1.
Original entry on oeis.org
1, 9, 32, 98, 287, 828, 2377, 6812, 19510, 55866, 159958, 457987, 1311283, 3754381, 10749290, 30776629, 88117519, 252291984, 722344942, 2068168017, 5921435438, 16953843853, 48541071558, 138979434294, 397916291012, 1139286366040, 3261925819973, 9339320097349, 26739694491713
Offset: 1
a(1) = 1 by decree; a(2) = 9 because 1/5 + ... + 1/11 < 1 < 1/5 + ... + 1/(9+3), so that a(3) = 32 because 1/13 + ... + 1/34 < 1/5 + ... + 1/12 < 1/13 + ... + 1/(32+3).
Successive values of a(n) yield a chain: 1 < 1/(1+4) + ... + 1/(9+3) < 1/(9+4) + ... + 1/(32+3) < 1/(32+4) + ... + 1/(98+3) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.8631..., it appears that lim_{n->infinity} b(n) = log R = 1.0519... .
-
nn = 11; f[n_] := 1/(n + 3); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &]; s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]] (* Peter J. C. Moses, May 13 2013 *)
-
lista(nn) = {default(realprecision, 100); my(k=5, r=1, s); print1(1); for(n=2, nn, s=0; while((s+=1./k)Jinyuan Wang, Jun 14 2020
A117617
a(n) = 5*a(n-1) + 3 with a(0) = 1.
Original entry on oeis.org
1, 8, 43, 218, 1093, 5468, 27343, 136718, 683593, 3417968, 17089843, 85449218, 427246093, 2136230468, 10681152343, 53405761718, 267028808593, 1335144042968, 6675720214843, 33378601074218, 166893005371093
Offset: 0
If n=1 then a(1) = 5*a(0) + 3 = 5*1 + 3 = 8 which is the second term.
A117088
a(n) = (11*5^n - 7)/4.
Original entry on oeis.org
1, 12, 67, 342, 1717, 8592, 42967, 214842, 1074217, 5371092, 26855467, 134277342, 671386717, 3356933592, 16784667967, 83923339842, 419616699217, 2098083496092, 10490417480467, 52452087402342, 262260437011717, 1311302185058592, 6556510925292967
Offset: 0
If n=1 then 5*(n-1) + 7 = 5*1 + 7 = 12, which is the second term.
Definition corrected and better name by
Ralf Stephan, Feb 23 2014
A137215
a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.
Original entry on oeis.org
3, 32, 355, 4110, 48887, 588886, 7111107, 85555550, 1022222215, 12111111102, 142222222211, 1655555555542, 19111111111095, 218888888888870, 2488888888888867, 28111111111111086, 315555555555555527, 3522222222222222190, 39111111111111111075, 432222222222222222182
Offset: 0
a(3) = 3*10^3 + (3*3 + 1)*(10^3 - 1)/9 = 4110.
-
Table[3*10^n +(n^2 +1)*(10^n -1)/9, {n,0,30}] (* G. C. Greubel, Jan 05 2022 *)
-
a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9; \\ Jinyuan Wang, Feb 27 2020
-
[3*10^n +(1+n^2)*(10^n -1)/9 for n in (0..30)] # G. C. Greubel, Jan 05 2022
Showing 1-6 of 6 results.
Comments