A052909
Expansion of g.f. (1+x-x^2)/((1-x)*(1-3*x)).
Original entry on oeis.org
1, 5, 16, 49, 148, 445, 1336, 4009, 12028, 36085, 108256, 324769, 974308, 2922925, 8768776, 26306329, 78918988, 236756965, 710270896, 2130812689, 6392438068, 19177314205, 57531942616, 172595827849, 517787483548, 1553362450645
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Ternary.......................Decimal
1...................................1
12..................................5
121................................16
1211...............................49
12111.............................148
121111............................445
1211111..........................1336
12111111.........................4009
121111111.......................12028
1211111111......................36085, etc. - _Philippe Deléham_, Feb 17 2014
-
Concatenation([1], List([1..30], n-> (11*3^n - 3)/6)); # G. C. Greubel, Oct 15 2019
-
I:=[1, 5, 16]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012
-
spec := [S,{S=Prod(Union(Sequence(Z),Z),Sequence(Union(Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[(1+x-x^2)/((1-x)*(1-3*x)),{x,0,30}],x] (* Vincenzo Librandi, Jun 22 2012 *)
Join[{1}, (11*3^Range[30] -3)/6] (* G. C. Greubel, Oct 15 2019 *)
-
vector(30, n, if(n==1, 1, (11*3^(n-1) - 3)/6)) \\ G. C. Greubel, Oct 15 2019
-
[1]+[(11*3^n -3)/6 for n in (1..30)] # G. C. Greubel, Oct 15 2019
A199109
a(n) = (7*3^n + 1)/2.
Original entry on oeis.org
4, 11, 32, 95, 284, 851, 2552, 7655, 22964, 68891, 206672, 620015, 1860044, 5580131, 16740392, 50221175, 150663524, 451990571, 1355971712, 4067915135, 12203745404, 36611236211, 109833708632, 329501125895, 988503377684, 2965510133051, 8896530399152, 26689591197455
Offset: 0
Ternary....................Decimal
11...............................4
102.............................11
1012............................32
10112...........................95
101112.........................284
1011112........................851
10111112......................2552
101111112.....................7655
1011111112...................22964, etc.
- _Philippe Deléham_, Feb 16 2014
-
[(7*3^n+1)/2 : n in [0..30]];
-
Table[(7 3^n + 1)/2, {n, 0, 20}] (* Eric W. Weisstein, Nov 29 2017 *)
(7 3^Range[0, 20] + 1)/2 (* Eric W. Weisstein, Nov 29 2017 *)
LinearRecurrence[{4, -3}, {11, 32}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *)
CoefficientList[Series[(4 - 5 x)/(1 - 4 x + 3 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
-
a(n)=7*3^n\2 \\ Charles R Greathouse IV, Oct 07 2015
A027107
a(n) = Sum_{k=0..2n} (k+1) * A027082(n, 2n-k).
Original entry on oeis.org
1, 6, 20, 62, 188, 566, 1700, 5102, 15308, 45926, 137780, 413342, 1240028, 3720086, 11160260, 33480782, 100442348, 301327046, 903981140, 2711943422, 8135830268, 24407490806, 73222472420, 219667417262, 659002251788
Offset: 0
A329774
a(n) = n+1 for n <= 2; otherwise a(n) = 3*a(n-3)+1.
Original entry on oeis.org
1, 2, 3, 4, 7, 10, 13, 22, 31, 40, 67, 94, 121, 202, 283, 364, 607, 850, 1093, 1822, 2551, 3280, 5467, 7654, 9841, 16402, 22963, 29524, 49207, 68890, 88573, 147622, 206671, 265720, 442867, 620014, 797161, 1328602, 1860043, 2391484, 3985807
Offset: 0
- Robert Fathauer, Email to N. J. A. Sloane, Oct 14 2019.
-
f:=proc(n) option remember;
if n<=2 then n+1 else 3*f(n-3)+1; fi; end;
[seq(f(n),n=0..50)];
-
Vec((1 + x + x^2 - 2*x^3) / ((1 - x)*(1 - 3*x^3)) + O(x^40)) \\ Colin Barker, Nov 27 2019
A330246
a(n) = 4^(n+1) + (4^n-1)/3.
Original entry on oeis.org
4, 17, 69, 277, 1109, 4437, 17749, 70997, 283989, 1135957, 4543829, 18175317, 72701269, 290805077, 1163220309, 4652881237, 18611524949, 74446099797, 297784399189, 1191137596757, 4764550387029, 19058201548117, 76232806192469, 304931224769877, 1219724899079509
Offset: 0
Together with 1: first bisection of
A136326.
-
[4^(n+1)+(4^n-1)/3: n in [0..30]];
-
Table[(4^(n + 1) + (4^n - 1) / 3), {n, 0, 30}]
A238055
a(n) = (13*3^n-1)/2.
Original entry on oeis.org
6, 19, 58, 175, 526, 1579, 4738, 14215, 42646, 127939, 383818, 1151455, 3454366, 10363099, 31089298, 93267895, 279803686, 839411059, 2518233178, 7554699535, 22664098606, 67992295819, 203976887458, 611930662375, 1835791987126, 5507375961379, 16522127884138
Offset: 0
Ternary....................Decimal
20...............................6
201.............................19
2011............................58
20111..........................175
201111.........................526
2011111.......................1579
20111111......................4738
201111111....................14215, etc.
A238206
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) is A007494(k) and T(n,k) = 3*T(n-1,k) + 1 for n>0.
Original entry on oeis.org
0, 2, 1, 3, 7, 4, 5, 10, 22, 13, 6, 16, 31, 67, 40, 8, 19, 49, 94, 202, 121, 9, 25, 58, 148, 283, 607, 364, 11, 28, 76, 175, 445, 850, 1822, 1093, 12, 34, 85, 229, 526, 1336, 2551, 5467, 3280, 14, 37, 103, 256, 688, 1579, 4009, 7654, 16402, 9841, 15, 43, 112, 310
Offset: 0
Square array begins:
0, 2, 3, 5, 6, 8, 9, ...
1, 7, 10, 16, 19, 25, 28, ...
4, 22, 31, 49, 58, 76, 85, ...
13, 67, 94, 148, 175, 229, 256, ...
40, 202, 283, 445, 523, 688, 769, ...
121, 607, 850, 1336, 1579, 2065, 2308, ...
364, 1822, 2551, 4009, 4738, 6196, 6925, ...
1093, 5467, 7654, 12028, 14215, 18589, 20776, ...
3280, 16402, 22963, 36085, 42646, 55768, 62329, ...
9841, 49207, 68890, 108256, 127939, 167305, 186988, ...
...
A370481
a(0) = 33. a(n) = 3*a(n-1) + 2*n + 1 for n >= 1.
Original entry on oeis.org
33, 102, 311, 940, 2829, 8498, 25507, 76536, 229625, 688894, 2066703, 6200132, 18600421, 55801290, 167403899, 502211728, 1506635217, 4519905686, 13559717095, 40679151324, 122037454013, 366112362082, 1098337086291, 3295011258920, 9885033776809, 29655101330478
Offset: 0
a(1) = 3*33 + 3 = 102, a(2) = 3*102 + 5 = 311.
-
LinearRecurrence[{5, -7, 3}, {33, 102, 311}, 26] (* Amiram Eldar, Apr 01 2024 *)
Showing 1-8 of 8 results.
Comments