A052548 a(n) = 2^n + 2.
3, 4, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..240
- Nicholas R. Beaton, Philippe Flajolet, and Anthony J. Guttmann, The Enumeration of Prudent Polygons by Area and its Unusual Asymptotics, arXiv:1011.6195 [math.CO], Nov 29, 2010.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 485
- Popular Computing (Calabasas, CA), Sieves: Problem 43, Vol. 2 (No. 13, Apr 1974), pp. 6-7. This is Sieve #6 with K=2. [Annotated and scanned copy]
- Eric Weisstein's World of Mathematics, Bertrand's Postulate
- Index entries for sequences generated by sieves
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Haskell
a052548 = (+ 2) . a000079 a052548_list = iterate ((subtract 2) . (* 2)) 3 -- Reinhard Zumkeller, Sep 05 2015
-
Magma
[2^n + 2: n in [0..35]]; // Vincenzo Librandi, Apr 29 2011
-
Maple
spec := [S,{S=Union(Sequence(Union(Z,Z)),Sequence(Z),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
2^Range[0,40]+2 (* Harvey P. Dale, Jun 26 2012 *)
-
PARI
a(n)=1<
Charles R Greathouse IV, Nov 20 2011
Formula
G.f.: (3-5*x)/((1-2*x)*(1-x)) = (3-5*x)/(1 - 3*x + 2*x^2) = 2/(1-x) + 1/(1-2*x).
a(0)=3, a(1)=4, a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = A173786(n,1), for n>0. - Reinhard Zumkeller, Feb 28 2010
a(0)=3, a(n) = 2*a(n-1) - 2. - Vincenzo Librandi, Aug 06 2010
E.g.f.: (2 + exp(x))*exp(x). - Ilya Gutkovskiy, Aug 16 2016
Extensions
More terms from James Sellers, Jun 06 2000
Comments