A134931
a(n) = (5*3^n-3)/2.
Original entry on oeis.org
1, 6, 21, 66, 201, 606, 1821, 5466, 16401, 49206, 147621, 442866, 1328601, 3985806, 11957421, 35872266, 107616801, 322850406, 968551221, 2905653666, 8716961001, 26150883006, 78452649021, 235357947066, 706073841201, 2118221523606
Offset: 0
-
[(5*3^n-3)/2: n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
-
seq((5*3^n-3)/2, n= 0..25); # Gary Detlefs, Jun 22 2010
-
a=1; lst={a}; Do[a=a*3+3; AppendTo[lst,a], {n,0,100}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 25 2008 *)
Table[(5 3^n - 9)/6, {n, 20}] (* Eric W. Weisstein, Dec 01 2017 *)
(5 3^Range[20] - 9)/6 (* Eric W. Weisstein, Dec 01 2017 *)
LinearRecurrence[{4, -3}, {1, 6}, 20] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[(1 + 2 x)/(1 - 4 x + 3 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
a(n) = (5*3^n-3)/2; /* Joerg Arndt, Apr 14 2013 */
A224820
Array r(n,m), where r(n,1) = n; r(n,2) = least k such that H(k) - H(n) > 1/n; and for m > 2, r(n,m) = least k such that H(k)-H(r(n,m-1)) > H(r(n,m-1)) - H(r(n,m-2)), where H = harmonic number.
Original entry on oeis.org
1, 4, 2, 13, 4, 3, 40, 8, 5, 4, 121, 16, 9, 6, 5, 364, 32, 16, 9, 7, 6, 1093, 64, 29, 14, 10, 8, 7, 3280, 128, 53, 22, 15, 11, 9, 8, 9841, 256, 97, 35, 23, 16, 12, 10, 9, 29524, 512, 178, 56, 36, 24, 16, 13, 11, 10, 88573, 1024, 327, 90, 57, 36, 22, 17, 14, 12, 11
Offset: 1
Northwest corner:
m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8
n=1: 1, 4, 13, 40, 121, 364, 1093, 3280
n=2: 2, 4, 8, 16, 32, 64, 128, 256
n=3: 3, 5, 9, 16, 29, 53, 97, 178
n=4: 4, 6, 9, 14, 22, 35, 56, 90
n=5: 5, 7, 10, 15, 23, 36, 57, 91
n=6: 6, 8, 11, 16, 24, 36, 54, 81
n=7: 7, 9, 12, 16, 22, 31, 44, 63
n=8: 8, 10, 13, 17, 23, 32, 45, 64
The chain indicated by row n=4 is
1/4 < 1/5 + 1/6 < 1/7 + 1/8 + 1/9 < 1/10 + ... + 1/14 < ...
-
h[n_] := h[n] = HarmonicNumber[N[n, 300]]; z = 12; Table[s = 0; a[1] = NestWhile[# + 1 &, x + 1, ! (s += 1/#) >= h[x] - h[x - 1] &]; s = 0; a[2] = NestWhile[# + 1 &, a[1] + 1, ! (s += 1/#) >= h[a[1]] - h[x] &]; Do[test = h[a[t - 1]] - h[a[t - 2]] + h[a[t - 1]]; s = 0; a[t] = Floor[x /. FindRoot[h[x] == test, {x, a[t - 1]}, WorkingPrecision -> 100]] + 1, {t, 3, z}]; Flatten[{x, Map[a, Range[z]]}], {x, 1, z}] // TableForm (* A224820 array *)
t = Flatten[Table[%[[n - k + 1]][[k]], {n, z}, {k, n, 1, -1}]]; (* A224820 sequence *) (* Peter J. C. Moses, Jul 20 2013 *)
A225919
a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+4) and a(1) = 1.
Original entry on oeis.org
1, 11, 40, 124, 367, 1070, 3104, 8989, 26016, 75280, 217815, 630210, 1823388, 5275597, 15263836, 44162700, 127775471, 369691398, 1069624136, 3094731965, 8953954568, 25906380024, 74954649447, 216865477466, 627454543012, 1815407450477, 5252498763364, 15196997925652
Offset: 1
a(1) = 1 by decree; a(2) = 11 because 1/6 + ... + 1/14 < 1 < 1/6 + ... + 1/(11+4), so that a(3) = 40 because 1/16 + ... + 1/43 < 1/6 + ... + 1/15 < 1/16 + ... + 1/(40+4).
Successive values of a(n) yield a chain: 1 < 1/(1+5) + ... + 1/(11+4) < 1/(11+5) + ... + 1/(40+4) < 1/(40+5) + ... + 1/(124+4) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.8931..., it appears that lim_{n->infinity} b(n) = log(R) = 1.0623... .
-
nn = 11; f[n_] := 1/(n + 4); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &]; s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]]
A225920
a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+5) and a(1) = 1.
Original entry on oeis.org
1, 13, 48, 150, 447, 1312, 3831, 11167, 32531, 94748, 275938, 803605, 2340292, 6815476, 19848236, 57802615, 168334451, 490228448, 1427657419, 4157665074, 12108072013, 35261476137, 102689486632, 299055281267, 870917405325, 2536310757258, 7386317253546, 21510645891422
Offset: 1
a(1) = 1 by decree; a(2) = 13 because 1/7 + ... + 1/17 < 1 < 1/7 + ... + 1/(13+5), so that a(3) = 48 because 1/19 + ... + 1/52 < 1/7 + ... + 1/18 < 1/19 + ... + 1/(48+5).
Successive values of a(n) yield a chain: 1 < 1/(1+6) + ... + 1/(13+5) < 1/(13+6) + ... + 1/(48+5) < 1/(48+6) + ... + 1/(150+5) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.912229..., it appears that lim_{n->infinity} b(n) = log(R) = 1.068918... .
-
nn = 11; f[n_] := 1/(n + 5); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &]; s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]]
A225921
a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+6) and a(1) = 1.
Original entry on oeis.org
1, 14, 50, 150, 427, 1195, 3324, 9226, 25587, 70942, 196672, 545212, 1511411, 4189842, 11614806, 32197786, 89256522, 247430866, 685911016, 1901435842, 5271031028, 14611993445, 40506373648, 112289011899, 311279955644, 862909105217, 2392097886032, 6631210937220, 18382591594862
Offset: 1
a(1) = 1 by decree; a(2) = 14 because 1/8 + ... + 1/19 < 1 < 1/8 + ... + 1/(14+6), so that a(3) = 50 because 1/21 + ... + 1/55 < 1/8 + ... + 1/20 < 1/21 + ... + 1/(50+6).
Successive values of a(n) yield a chain: 1 < 1/(1+7) + ... + 1/(14+6) < 1/(14+7) + ... + 1/(50+6) < 1/(50+7) + ... + 1/(150+6) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.7721..., it appears that lim_{n->infinity} b(n) = log(R) = 1.0196... .
-
nn = 11; f[n_] := 1/(n + 6); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &];
s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]]
A225922
a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+7) and a(1) = 1.
Original entry on oeis.org
1, 16, 58, 176, 507, 1436, 4043, 11359, 31890, 89506, 251193, 704933, 1978258, 5551574, 15579326, 43720081, 122691130, 344306598, 966223316, 2711500429, 7609249779, 21353742568, 59924740904, 168166051476, 471922288540, 1324349620283, 3716505787761, 10429583743512
Offset: 1
a(1) = 1 by decree; a(2) = 15 because 1/9 + ... + 1/21 < 1 < 1/9 + ... + 1/(15+7), so that a(3) = 58 because 1/23 + ... + 1/57 < 1/9 + ... + 1/22 < 1/23 + ... + 1/(58+7).
Successive values of a(n) yield a chain: 1 < 1/(1+8) + ... + 1/(15+7) < 1/(15+8) + ... + 1/(58+7) < 1/(58+8) + ... + 1/(176+7) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.80628..., it appears that lim_{n->infinity} b(n) = log(R) = 1.03186... .
-
nn = 11; f[n_] := 1/(n + 7); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &]; s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]]
Showing 1-6 of 6 results.
Comments