cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A134931 a(n) = (5*3^n-3)/2.

Original entry on oeis.org

1, 6, 21, 66, 201, 606, 1821, 5466, 16401, 49206, 147621, 442866, 1328601, 3985806, 11957421, 35872266, 107616801, 322850406, 968551221, 2905653666, 8716961001, 26150883006, 78452649021, 235357947066, 706073841201, 2118221523606
Offset: 0

Views

Author

Rolf Pleisch, Jan 29 2008

Keywords

Comments

Numbers n where the recurrence s(0)=1, if s(n-1) >= n then s(n) = s(n-1) - n else s(n) = s(n-1) + n produces s(n)=0. - Hugo Pfoertner, Jan 05 2012
A046901(a(n)) = 1. - Reinhard Zumkeller, Jan 31 2013
Binomial transform of A146523: (1, 5, 10, 20, 40, ...) and double binomial transform of A010685: (1, 4, 1, 4, 1, 4, ...). - Gary W. Adamson, Aug 25 2016
Also the number of maximal cliques in the (n+1)-Hanoi graph. - Eric W. Weisstein, Dec 01 2017
a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+1). Because Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1) - 1/((a(n)+1+5*3^n)*5*3^(n-1)) < Sum_{k=1..5*3^(n-1)} 1/(a(n-1)+k+1) < Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1), we have 1 < 1/3 + 1/4 + ... + 1/7 < 1/8 + 1/9 + ... + 1/22 < ... . - Jinyuan Wang, Jun 15 2020

Crossrefs

Programs

Formula

a(n) = 3*(a(n-1) + 1), with a(0)=1.
From R. J. Mathar, Jan 31 2008: (Start)
O.g.f.: (5/2)/(1-3*x) - (3/2)/(1-x).
a(n) = (A005030(n) - 3)/2. (End)
a(n) = A060816(n+1) - 1. - Philippe Deléham, Apr 14 2013
E.g.f.: exp(x)*(5*exp(2*x) - 3)/2. - Stefano Spezia, Aug 28 2023

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 25 2008

A224820 Array r(n,m), where r(n,1) = n; r(n,2) = least k such that H(k) - H(n) > 1/n; and for m > 2, r(n,m) = least k such that H(k)-H(r(n,m-1)) > H(r(n,m-1)) - H(r(n,m-2)), where H = harmonic number.

Original entry on oeis.org

1, 4, 2, 13, 4, 3, 40, 8, 5, 4, 121, 16, 9, 6, 5, 364, 32, 16, 9, 7, 6, 1093, 64, 29, 14, 10, 8, 7, 3280, 128, 53, 22, 15, 11, 9, 8, 9841, 256, 97, 35, 23, 16, 12, 10, 9, 29524, 512, 178, 56, 36, 24, 16, 13, 11, 10, 88573, 1024, 327, 90, 57, 36, 22, 17, 14, 12, 11
Offset: 1

Views

Author

Clark Kimberling, Jul 21 2013

Keywords

Comments

For every n, the sequence H(r(n,m)) - H(r(n,m-1)) converges as m -> oo. Which row-sequences are linearly recurrent? Is r(4,m) = 1 + F(m+3), where F = A000045 (Fibonacci numbers)?
More generally, suppose that x and y are positive integers and that x <= y. Let c(1) = y and c(2) = least k such that H(k) - H(y) > H(y) - H(x); for n > 2, let c(n) = least k such that H(k) - H(c(n-1)) > H(c(n-1)) - H(c(n-2)). Thus the Egyptian fractions for m >= x are partitioned, and 1/x + ... + 1/c(1) < 1/(c(1)+1) + ... + 1/(c(2)) < 1/(c(2)+1) + ... + 1/(c(3)) < ... The sequences H(c(n))-H(c(n-1)) and c(n)/c(n-1) converge. For what choices of (x,y) is the sequence c(n) linearly recurrent?

Examples

			Northwest corner:
       m=1  m=2  m=3  m=4  m=5  m=6   m=7   m=8
  n=1:   1,   4,  13,  40, 121, 364, 1093, 3280
  n=2:   2,   4,   8,  16,  32,  64,  128,  256
  n=3:   3,   5,   9,  16,  29,  53,   97,  178
  n=4:   4,   6,   9,  14,  22,  35,   56,   90
  n=5:   5,   7,  10,  15,  23,  36,   57,   91
  n=6:   6,   8,  11,  16,  24,  36,   54,   81
  n=7:   7,   9,  12,  16,  22,  31,   44,   63
  n=8:   8,  10,  13,  17,  23,  32,   45,   64
The chain indicated by row n=4 is
1/4 < 1/5 + 1/6 < 1/7 + 1/8 + 1/9 < 1/10 + ... + 1/14 < ...
		

Crossrefs

Cf. A225918.

Programs

  • Mathematica
    h[n_] := h[n] = HarmonicNumber[N[n, 300]]; z = 12; Table[s = 0; a[1] = NestWhile[# + 1 &, x + 1, ! (s += 1/#) >= h[x] - h[x - 1] &];   s = 0; a[2] = NestWhile[# + 1 &, a[1] + 1, ! (s += 1/#) >= h[a[1]] - h[x] &]; Do[test = h[a[t - 1]] - h[a[t - 2]] + h[a[t - 1]]; s = 0; a[t] = Floor[x /. FindRoot[h[x] == test, {x, a[t - 1]}, WorkingPrecision -> 100]] + 1, {t, 3, z}]; Flatten[{x, Map[a, Range[z]]}], {x, 1, z}] // TableForm (* A224820 array *)
    t = Flatten[Table[%[[n - k + 1]][[k]], {n, z}, {k, n, 1, -1}]]; (* A224820 sequence *) (* Peter J. C. Moses, Jul 20 2013 *)

A225919 a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+4) and a(1) = 1.

Original entry on oeis.org

1, 11, 40, 124, 367, 1070, 3104, 8989, 26016, 75280, 217815, 630210, 1823388, 5275597, 15263836, 44162700, 127775471, 369691398, 1069624136, 3094731965, 8953954568, 25906380024, 74954649447, 216865477466, 627454543012, 1815407450477, 5252498763364, 15196997925652
Offset: 1

Views

Author

Clark Kimberling, May 21 2013

Keywords

Comments

Conjecture: a(n) is linearly recurrent. See A225918 for details.

Examples

			a(1) = 1 by decree; a(2) = 11 because 1/6 + ... + 1/14 < 1 < 1/6 + ... + 1/(11+4), so that a(3) = 40 because 1/16 + ... + 1/43 < 1/6 + ... + 1/15 < 1/16 + ... + 1/(40+4).
Successive values of a(n) yield a chain: 1 < 1/(1+5) + ... + 1/(11+4) < 1/(11+5) + ... + 1/(40+4) < 1/(40+5) + ... + 1/(124+4) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.8931..., it appears that lim_{n->infinity} b(n) = log(R) = 1.0623... .
		

Crossrefs

Cf. A225918.

Programs

  • Mathematica
    nn = 11; f[n_] := 1/(n + 4); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &]; s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]]

Formula

For n>=3, a(n) = ceiling( (a(n-1)+4.5)^2 / (a(n-2)+4.5) - 4.5 ) unless the fractional part of the number inside ceiling() is very small (~ 1/a(n-2)). - Max Alekseyev, Jan 27 2022

Extensions

a(11)-a(16) from Robert G. Wilson v, May 22 2013
a(17)-a(18) from Robert G. Wilson v, Jun 13 2013
a(19) from Jinyuan Wang, Jun 14 2020
Terms a(20) on from Max Alekseyev, Jan 27 2022

A225920 a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+5) and a(1) = 1.

Original entry on oeis.org

1, 13, 48, 150, 447, 1312, 3831, 11167, 32531, 94748, 275938, 803605, 2340292, 6815476, 19848236, 57802615, 168334451, 490228448, 1427657419, 4157665074, 12108072013, 35261476137, 102689486632, 299055281267, 870917405325, 2536310757258, 7386317253546, 21510645891422
Offset: 1

Views

Author

Clark Kimberling, May 21 2013

Keywords

Comments

Conjecture: a(n) is linearly recurrent. See A225918 for details.
The sequence does not satisfy any linear recurrence of order below 50, which suggests it's unlikely to exist. - Max Alekseyev, Jan 27 2022

Examples

			a(1) = 1 by decree; a(2) = 13 because 1/7 + ... + 1/17 < 1 < 1/7 + ... + 1/(13+5), so that a(3) = 48 because 1/19 + ... + 1/52 < 1/7 + ... + 1/18 < 1/19 + ... + 1/(48+5).
Successive values of a(n) yield a chain: 1 < 1/(1+6) + ... + 1/(13+5) < 1/(13+6) + ... + 1/(48+5) < 1/(48+6) + ... + 1/(150+5) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.912229..., it appears that lim_{n->infinity} b(n) = log(R) = 1.068918... .
		

Crossrefs

Cf. A225918.

Programs

  • Mathematica
    nn = 11; f[n_] := 1/(n + 5); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &]; s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]]

Formula

For n>=3, a(n) = ceiling( (a(n-1)+5.5)^2 / (a(n-2)+5.5) - 5.5 ) unless the fractional part of the number inside ceiling() is very small (~ 1/a(n-2)). - Max Alekseyev, Jan 27 2022

Extensions

a(12)-a(16) from Robert G. Wilson v, May 22 2013
a(17)-a(18) from Robert G. Wilson v, Jun 13 2013
a(18) corrected by and a(19) from Jinyuan Wang, Jun 14 2020
Terms a(20) on from Max Alekseyev, Jan 27 2022

A225921 a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+6) and a(1) = 1.

Original entry on oeis.org

1, 14, 50, 150, 427, 1195, 3324, 9226, 25587, 70942, 196672, 545212, 1511411, 4189842, 11614806, 32197786, 89256522, 247430866, 685911016, 1901435842, 5271031028, 14611993445, 40506373648, 112289011899, 311279955644, 862909105217, 2392097886032, 6631210937220, 18382591594862
Offset: 1

Views

Author

Clark Kimberling, May 21 2013

Keywords

Comments

Conjecture: a(n) is linearly recurrent. See A225918 for details.
The sequence does not satisfy any linear recurrence of order below 50, which suggests it's unlikely to exist. - Max Alekseyev, Jan 27 2022

Examples

			a(1) = 1 by decree; a(2) = 14 because 1/8 + ... + 1/19 < 1 < 1/8 + ... + 1/(14+6), so that a(3) = 50 because 1/21 + ... + 1/55 < 1/8 + ... + 1/20 < 1/21 + ... + 1/(50+6).
Successive values of a(n) yield a chain: 1 < 1/(1+7) + ... + 1/(14+6) < 1/(14+7) + ... + 1/(50+6) < 1/(50+7) + ... + 1/(150+6) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.7721..., it appears that lim_{n->infinity} b(n) = log(R) = 1.0196... .
		

Crossrefs

Cf. A225918.

Programs

  • Mathematica
    nn = 11; f[n_] := 1/(n + 6); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &];
    s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]]

Formula

For n>=3, a(n) = ceiling( (a(n-1)+6.5)^2 / (a(n-2)+6.5) - 6.5 ) unless the fractional part of the number inside ceiling() is very small (~ 1/a(n-2)). - Max Alekseyev, Jan 27 2022

Extensions

a(13)-a(16) from Robert G. Wilson v, May 22 2013
a(17)-a(18) from Robert G. Wilson v, Jun 13 2013
a(19) from Jinyuan Wang, Jun 14 2020
Terms a(20) on from Max Alekseyev, Jan 27 2022

A225922 a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+7) and a(1) = 1.

Original entry on oeis.org

1, 16, 58, 176, 507, 1436, 4043, 11359, 31890, 89506, 251193, 704933, 1978258, 5551574, 15579326, 43720081, 122691130, 344306598, 966223316, 2711500429, 7609249779, 21353742568, 59924740904, 168166051476, 471922288540, 1324349620283, 3716505787761, 10429583743512
Offset: 1

Views

Author

Clark Kimberling, May 21 2013

Keywords

Comments

Conjecture: a(n) is linearly recurrent. See A225918 for details.
The sequence does not satisfy any linear recurrence of order below 50, which suggests it's unlikely to exist. - Max Alekseyev, Jan 27 2022

Examples

			a(1) = 1 by decree; a(2) = 15 because 1/9 + ... + 1/21 < 1 < 1/9 + ... + 1/(15+7), so that a(3) = 58 because 1/23 + ... + 1/57 < 1/9 + ... + 1/22 < 1/23 + ... + 1/(58+7).
Successive values of a(n) yield a chain: 1 < 1/(1+8) + ... + 1/(15+7) < 1/(15+8) + ... + 1/(58+7) < 1/(58+8) + ... + 1/(176+7) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.80628..., it appears that lim_{n->infinity} b(n) = log(R) = 1.03186... .
		

Crossrefs

Cf. A225918.

Programs

  • Mathematica
    nn = 11; f[n_] := 1/(n + 7); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &]; s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]]

Formula

For n>=3, a(n) = ceiling( (a(n-1)+7.5)^2 / (a(n-2)+7.5) - 7.5 ) unless the fractional part of the number inside ceiling() is very small (~ 1/a(n-2)). - Max Alekseyev, Jan 27 2022

Extensions

a(10)-a(17) from Robert G. Wilson v, May 22 2013
a(18) from Robert G. Wilson v, Jun 13 2013
a(19) from Jinyuan Wang, Jun 14 2020
Terms a(20) on from Max Alekseyev, Jan 27 2022
Showing 1-6 of 6 results.