cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309787 Palindromes whose product of digits are palindromes with at least two digits.

Original entry on oeis.org

676, 777, 16761, 17771, 23732, 32723, 61716, 71717, 1167611, 1177711, 1237321, 1327231, 1617161, 1717171, 2137312, 2317132, 3127213, 3217123, 6117116, 7117117, 111676111, 111777111, 112373211, 113272311, 116171611, 117171711, 121373121, 123171321
Offset: 1

Views

Author

Maxim Veselov, Nov 11 2019

Keywords

Comments

For n < 40 every term relates to 676 or 777.

Examples

			For 676: 6*7*6 = 252.
For 1717171: 1*7*1*7*1*7*1 = 343.
		

Crossrefs

Programs

  • Magma
    f:=func; g:=func; [k:k in [1..10000000]| f(k) and f(&*Intseq(k)) and g(k)]; // Marius A. Burtea, Nov 12 2019
  • Maple
    ispali:= proc(n) option remember; local L,i;
    L:= convert(n,base,10);
    andmap(i -> L[i]=L[-i], [$1..floor(nops(L)/2)])
    end proc:
    P[1]:= [$1..9]:
    P[2]:= [seq(11*i,i=1..9)]:
    for d from 3 to 13 do
      P[d]:= [seq(seq((10^(d-1)+1)*i+10*x, x=P[d-2]),i=1..9)]
    od:
    filter:= proc(n) local p; p:= convert(convert(n,base,10),`*`);
      p >= 11 and ispali(p)
    end proc:
    map(op,[seq(select(filter, P[d]),d=1..13)]); # Robert Israel, Nov 14 2019
  • Mathematica
    pd[n_] := Times @@ IntegerDigits[n]; aQ[n_] := PalindromeQ[n] && (p = pd[n]) > 9 && PalindromeQ[p]; Select[Range[10^7], aQ] (* Amiram Eldar, Nov 12 2019 *)

Extensions

Corrected by Robert Israel, Nov 14 2019

A082207 Palindromes whose product of digits is a positive palindrome.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 111, 121, 131, 141, 151, 161, 171, 181, 191, 212, 222, 313, 676, 777, 1111, 1221, 1331, 2112, 3113, 11111, 11211, 11311, 11411, 11511, 11611, 11711, 11811, 11911, 12121, 12221, 13131, 16761, 17771, 21112, 21212
Offset: 1

Views

Author

Amarnath Murthy, Apr 10 2003

Keywords

Comments

The unary sequence A000042 is a trivial subsequence.
Conjecture: There are infinitely many terms in the sequence (of the type 777) for which the product of digits > 10.
Subset of A117055, containing terms for which product of digits is greater than 0. - Jayanta Basu, May 15 2013

Examples

			777 is a term as 7^3 = 343 is a palindrome.
		

Crossrefs

Cf. A082208.

Programs

  • Mathematica
    id[n_]:=IntegerDigits[n]; palQ[n_]:=Reverse[x=id[n]]==x; t={}; Do[If[palQ[n] && (y=Times@@id[n]) > 0 && palQ[y], AppendTo[t,n]], {n,21220}]; t (* Jayanta Basu, May 15 2013 *)
    Select[Range[22000],FreeQ[IntegerDigits[#],0]&&AllTrue[{#,Times @@ IntegerDigits[ #]},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 22 2019 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003
Showing 1-2 of 2 results.