A117058 Palindromes for which the product of the digits is prime.
2, 3, 5, 7, 121, 131, 151, 171, 11211, 11311, 11511, 11711, 1112111, 1113111, 1115111, 1117111, 111121111, 111131111, 111151111, 111171111, 11111211111, 11111311111, 11111511111, 11111711111, 1111112111111, 1111113111111
Offset: 1
Examples
11211 is in the sequence because it is a palindrome and the product of its digits 1*1*2*1*1=2 is a prime.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,110,-110,0,0,-1000,1000).
Crossrefs
Cf. A002113.
Programs
-
Magma
I:=[2,3,5,7,121,131,151,171,11211]; [n le 9 select I[n] else Self(n-1)+110*Self(n-4)-110*Self(n-5)-1000*Self(n-8)+1000*Self(n-9): n in [1..30]]; // Vincenzo Librandi, Nov 14 2018
-
Mathematica
Sort[Flatten[Table[NestList[FromDigits[Flatten[{1, IntegerDigits[#], 1}]] &, n, 6], {n, Prime[Range[4]]}]]] (* Jayanta Basu, Jul 13 2013 *) LinearRecurrence[{1, 0, 0, 110, -110, 0, 0, -1000, 1000}, {2, 3, 5, 7, 121, 131, 151, 171, 11211}, 40] (* Vincenzo Librandi, Nov 14 2018 *)
-
PARI
isok(n) = my(d=digits(n)); (Vecrev(d) == d) && isprime(vecprod(d)); \\ Michel Marcus, Nov 14 2018
Formula
From Chai Wah Wu, Nov 13 2018: (Start)
a(n) = a(n-1) + 110*a(n-4) - 110*a(n-5) - 1000*a(n-8) + 1000*a(n-9) for n > 9.
G.f.: x*(-500*x^8 + 200*x^7 + 200*x^6 + 100*x^5 + 106*x^4 - 2*x^3 - 2*x^2 - x - 2)/((x - 1)*(10*x^2 - 1)*(10*x^2 + 1)*(10*x^4 - 1)). (End)