cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117058 Palindromes for which the product of the digits is prime.

Original entry on oeis.org

2, 3, 5, 7, 121, 131, 151, 171, 11211, 11311, 11511, 11711, 1112111, 1113111, 1115111, 1117111, 111121111, 111131111, 111151111, 111171111, 11111211111, 11111311111, 11111511111, 11111711111, 1111112111111, 1111113111111
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 16 2006

Keywords

Examples

			11211 is in the sequence because it is a palindrome and the product of its digits 1*1*2*1*1=2 is a prime.
		

Crossrefs

Cf. A002113.

Programs

  • Magma
    I:=[2,3,5,7,121,131,151,171,11211]; [n le 9 select I[n] else Self(n-1)+110*Self(n-4)-110*Self(n-5)-1000*Self(n-8)+1000*Self(n-9): n in [1..30]]; // Vincenzo Librandi, Nov 14 2018
  • Mathematica
    Sort[Flatten[Table[NestList[FromDigits[Flatten[{1, IntegerDigits[#], 1}]] &, n, 6], {n, Prime[Range[4]]}]]] (* Jayanta Basu, Jul 13 2013 *)
    LinearRecurrence[{1, 0, 0, 110, -110, 0, 0, -1000, 1000}, {2, 3, 5, 7, 121, 131, 151, 171, 11211}, 40] (* Vincenzo Librandi, Nov 14 2018 *)
  • PARI
    isok(n) = my(d=digits(n)); (Vecrev(d) == d) && isprime(vecprod(d)); \\ Michel Marcus, Nov 14 2018
    

Formula

From Chai Wah Wu, Nov 13 2018: (Start)
a(n) = a(n-1) + 110*a(n-4) - 110*a(n-5) - 1000*a(n-8) + 1000*a(n-9) for n > 9.
G.f.: x*(-500*x^8 + 200*x^7 + 200*x^6 + 100*x^5 + 106*x^4 - 2*x^3 - 2*x^2 - x - 2)/((x - 1)*(10*x^2 - 1)*(10*x^2 + 1)*(10*x^4 - 1)). (End)