cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A279571 Number of length n inversion sequences avoiding the patterns 100, 101, and 201.

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 424, 2106, 11102, 61436, 353980, 2110366, 12955020, 81569168, 525106698, 3447244188, 23028080268, 156246994264, 1075127143948, 7492458675666, 52820934349420, 376331681648402, 2707312468516446, 19650530699752470, 143807774782994412, 1060472244838174574, 7875713244761349666, 58876660310205135380, 442862775457168812898, 3350397169412102710198
Offset: 0

Views

Author

Megan A. Martinez, Feb 21 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j <= e_k and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 100, 101, and 201.

Examples

			The length 4 inversion sequences avoiding (100,101,201) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0102, 0103, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, s, m) option remember;
          `if`(n=0, 1, add(b(n-1, i+1, s minus {$j..m-
          `if`(j=m, 1, 0)} union {i+1}, max(m, j)), j=s))
        end:
    a:= n-> b(n, 1, {1}, 0):
    seq(a(n), n=0..15);  # Alois P. Heinz, Feb 22 2017
  • Mathematica
    b[n_, i_, s_, m_] := b[n, i, s, m] = If[n == 0, 1, Sum[b[n-1, i+1, s  ~Complement~ Range[j, m - If[j == m, 1, 0]] ~Union~ {i+1}, Max[m, j]], {j, s}]];
    a[n_] := b[n, 1, {1}, 0];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 27 2017, after Alois P. Heinz *)

Extensions

a(10)-a(25) from Alois P. Heinz, Feb 22 2017
a(26)-a(29) from Vaclav Kotesovec, Oct 07 2021

A363682 Number of plane bipolar posets (i.e., plane bipolar orientations with no transitive edge) with n edges.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 32, 93, 279, 872, 2830, 9433, 32223, 112527, 400370, 1448520, 5320023, 19802827, 74612164, 284238390, 1093757436, 4247742956, 16636921148, 65671960544, 261111950308, 1045172796381, 4209807155949, 17055625810984, 69476952146529, 284467866640048
Offset: 1

Views

Author

Éric Fusy, Jun 16 2023

Keywords

Comments

a(n) is also the number of walks of length n-1 in the quadrant, starting and ending at the origin, with step-set {0,E,S,NW,SE} (where 0 is the stay-step).

Crossrefs

Programs

  • Maple
    A:=proc(n,i,j) option remember:
    if n=0 and i=0 and j=0 then return 1:
    elif n<=0 or j<0 or i<0 then return 0:
    else
    return A(n-1,i,j)+A(n-1,i-1,j)+A(n-1,i,j+1)+A(n-1,i+1,j-1)+A(n-1,i-1,j+1):
    fi:
    end proc:
    seq(A(n-1,0,0),n=1..20);
Showing 1-2 of 2 results.