cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Éric Fusy

Éric Fusy's wiki page.

Éric Fusy has authored 4 sequences.

A363682 Number of plane bipolar posets (i.e., plane bipolar orientations with no transitive edge) with n edges.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 32, 93, 279, 872, 2830, 9433, 32223, 112527, 400370, 1448520, 5320023, 19802827, 74612164, 284238390, 1093757436, 4247742956, 16636921148, 65671960544, 261111950308, 1045172796381, 4209807155949, 17055625810984, 69476952146529, 284467866640048
Offset: 1

Author

Éric Fusy, Jun 16 2023

Keywords

Comments

a(n) is also the number of walks of length n-1 in the quadrant, starting and ending at the origin, with step-set {0,E,S,NW,SE} (where 0 is the stay-step).

Crossrefs

Programs

  • Maple
    A:=proc(n,i,j) option remember:
    if n=0 and i=0 and j=0 then return 1:
    elif n<=0 or j<0 or i<0 then return 0:
    else
    return A(n-1,i,j)+A(n-1,i-1,j)+A(n-1,i,j+1)+A(n-1,i+1,j-1)+A(n-1,i-1,j+1):
    fi:
    end proc:
    seq(A(n-1,0,0),n=1..20);

A114289 Number of combinatorial types of n-dimensional polytopes with n+3 vertices.

Original entry on oeis.org

0, 1, 7, 31, 116, 379, 1133, 3210, 8803, 23701, 63239, 168287, 447905, 1194814, 3196180, 8576505, 23081668, 62292381, 168536249, 457035453, 1241954405, 3381289332, 9221603416, 25189382006, 68906572413, 188750887991
Offset: 1

Author

Éric Fusy (eric.fusy(AT)inria.fr), Nov 21 2005

Keywords

References

  • B. Grünbaum, Convex Polytopes, Springer-Verlag, 2003, Second edition prepared by V. Kaibel, V. Klee and G. M. Ziegler, p. 121a.

Crossrefs

Programs

  • Maple
    N:=60: with(numtheory): G:=-ln(1-2*x^3/(1-2*x)^2): H:=-ln(1-2*x)+ln(1-x): K:=-1/2*x*(x-8*x^3-1+5*x^2-7*x^4+2*x^6+5*x^8-9*x^7+19*x^5-14*x^9+x^10+19*x^11-5*x^12+4*x^14-8*x^13)/(1-x)^5/(2*x^6-4*x^4+4*x^2-1)/(x+1)^2: series(1/(x^3-x^4)*(1/4*sum(phi(2*r+1)/(2*r+1)*subs(x=x^(2*r+1),G),r=0..N)+1/2*sum(phi(r)/r*subs(x=x^r,H),r=1..N)+K),x,N);
  • Mathematica
    terms = 26;
    G[x_] = -Log[1 - 2(x^3/(1 - 2x)^2)];
    H[x_] = -Log[1 - 2x] + Log[1 - x];
    K[x_] = -1/2 x (x - 8x^3 - 1 + 5x^2 - 7x^4 + 2x^6 + 5x^8 - 9x^7 + 19x^5 - 14x^9 + x^10 + 19x^11 - 5x^12 + 4x^14 - 8x^13)/(1-x)^5/(2x^6 - 4x^4 + 4x^2 - 1)/(x+1)^2;
    1/(x^3 - x^4) (1/4 Sum[EulerPhi[2r + 1]/(2r + 1) G[x^(2r + 1)], {r, 0, terms+2}] + 1/2 Sum[EulerPhi[r]/r H[x^r], {r, 1, terms+2}] + K[x]) + O[x]^(terms+2) // CoefficientList[#, x]& // Rest // Most // Round (* Jean-François Alcover, Dec 14 2018 *)

A114290 Number of oriented n-dimensional polytopes with n+3 vertices, meaning that two polytopes are identified if they have the same combinatorial type and there exists an orientation-preserving homeomorphism mapping the first polytope to the second polytope.

Original entry on oeis.org

0, 1, 7, 38, 170, 617, 1979, 5859, 16571, 45516, 123159, 330736, 885780, 2372305, 6362965, 17102719, 46078541, 124440388, 336829857, 913658780, 2483217288, 6761405513, 18441239903, 50375429081, 137807555515, 377492301876
Offset: 1

Author

Éric Fusy (eric.fusy(AT)inria.fr), Nov 21 2005

Keywords

References

  • B. Grünbaum, Convex Polytopes, Springer-Verlag, 2003, Second edition prepared by V. Kaibel, V. Klee and G. M. Ziegler, p. 121a.

Crossrefs

Programs

  • Maple
    N:=30: with(numtheory): G:=-ln(1-2*x^3/(1-2*x)^2): H:=-log(1-2*x)+ln(1-x): K:=-(x^10+3*x^9-3*x^8-7*x^7+4*x^6+4*x^5+4*x^4+3*x^3-2*x^2+1)*x/(1-x)^5/(x+1)^3: series(1/(x^3-x^4)*(1/2*sum(phi(2*r+1)/(2*r+1)*subs(x=x^(2*r+1),G),r=0..N)+sum(phi(r)/r*subs(x=x^r,H),r=1..N)+K),x,N);
  • Mathematica
    terms = 26;
    G[x_] = -Log[1 - 2 (x^3/(1 - 2 x)^2)];
    H[x_] = -Log[1 - 2 x] + Log[1 - x];
    K[x_] = -(x^10 + 3 x^9 - 3 x^8 - 7 x^7 + 4 x^6 + 4 x^5 + 4 x^4 + 3 x^3 - 2 x^2 + 1) x/(1 - x)^5/(x + 1)^3;
    1/(x^3 - x^4) (1/2 Sum[EulerPhi[2 r + 1]/(2 r + 1) G[x^(2 r + 1)], {r, 0, terms+3}] + Sum[EulerPhi[r]/r H[x^r], {r, 1, terms+3}] + K[x]) + O[x]^(terms+2) // CoefficientList[#, x]& // Rest // Most // Round (* Jean-François Alcover, Dec 14 2018 *)

A114291 Number of combinatorial types of achiral n-dimensional polytopes with n+3 vertices, where a polytope is achiral if one of its geometric realizations has a reflection-symmetry.

Original entry on oeis.org

0, 1, 7, 24, 62, 141, 287, 561, 1035, 1886, 3319, 5838, 10030, 17323, 29395, 50291, 84795, 144374, 242641, 412126, 691522, 1173151, 1966929, 3334931, 5589311, 9474106, 15875699, 26906538, 45083426, 76404103, 128014623, 216944163
Offset: 1

Author

Éric Fusy (eric.fusy(AT)inria.fr), Nov 21 2005

Keywords

References

  • B. Grünbaum, Convex Polytopes, Springer-Verlag, 2003, Second edition prepared by V. Kaibel, V. Klee and G. M. Ziegler, p. 121a.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 6, -14, -12, 38, 8, -54, 5, 44, -12, -20, 8, 4, -2}, {0, 1, 7, 24, 62, 141, 287, 561, 1035, 1886, 3319, 5838, 10030, 17323}, 32] (* Jean-François Alcover, Dec 14 2018 *)
  • PARI
    concat(0, Vec((2*x^11+4*x^10-2*x^9-15*x^8-5*x^7+23*x^6+15*x^5 -17*x^4-14*x^3+4*x^2 +5*x+1)*x^2/ (-1+x)^5/(2*x^6-4*x^4+4*x^2-1)/(x+1)^3 + O(x^50))) \\ Michel Marcus, Dec 12 2014

Formula

G.f.: (2*x^11+4*x^10-2*x^9-15*x^8-5*x^7+23*x^6+15*x^5-17*x^4 -14*x^3 +4*x^2+5*x+1) *x^2 / ((-1+x)^5*(2*x^6-4*x^4+4*x^2-1)*(x+1)^3).