A117142 Number of partitions of n in which any two parts differ by at most 2.
1, 2, 3, 5, 6, 9, 10, 14, 15, 20, 21, 27, 28, 35, 36, 44, 45, 54, 55, 65, 66, 77, 78, 90, 91, 104, 105, 119, 120, 135, 136, 152, 153, 170, 171, 189, 190, 209, 210, 230, 231, 252, 253, 275, 276, 299, 300, 324, 325, 350, 351, 377, 378, 405, 406, 434, 435, 464, 465
Offset: 1
Examples
a(6) = 9 because we have 1: [6], 2: [4, 2], 3: [3, 3], 4: [3, 2, 1], 5: [3, 1, 1, 1], 6: [2, 2, 2], 7: [2, 2, 1, 1], 8: [2, 1, 1, 1, 1], 9: [1, 1, 1, 1, 1, 1] ([5,1] and [4,1,1] do not qualify).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Jonathan Bloom and Nathan McNew, Counting pattern-avoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
GAP
List([1..60],n->(2*n^2+10*n+3+(-1)^n*(2*n-3))/16); # Muniru A Asiru, Dec 21 2018
-
Magma
[(2*n*(n+5) +3 +(-1)^n*(2*n-3))/16: n in [1..60]]; // G. C. Greubel, Jul 18 2023
-
Maple
g:=sum(x^k/(1-x^k)/(1-x^(k+1))/(1-x^(k+2)),k=1..75): gser:=series(g,x=0,70): seq(coeff(gser,x^n),n=1..65); with(combinat): for n from 1 to 7 do P:=partition(n): A:={}: for j from 1 to nops(P) do if P[j][nops(P[j])]-P[j][1]<3 then A:=A union {P[j]} else A:=A fi od: print(A); od: # this program yields the partitions
-
Mathematica
Table[Count[IntegerPartitions[n], ?(Max[#] - Min[#] <= 2 &)], {n, 30}] (* _Birkas Gyorgy, Feb 20 2011 *) Table[(2*n^2 +10*n +3 +(-1)^n*(2*n-3))/16, {n,30}] (* Birkas Gyorgy, Feb 20 2011 *) Table[Sum[If[EvenQ[k], 1, (k+1)/2], {k,0,n}], {n,0,60}] (* Jon Maiga, Dec 21 2018 *)
-
PARI
Vec(x*(x^2-x-1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Mar 05 2015
-
SageMath
[(2*n*(n+5) +3 +(-1)^n*(2*n-3))/16 for n in range(1,61)] # G. C. Greubel, Jul 18 2023
Formula
G.f.: Sum_{k>=1} x^k/((1 - x^k)*(1 - x^(k + 1))*(1 - x^(k + 2))). More generally, the g.f. of the number of partitions in which any two parts differ by at most b is Sum_{k>=1} (x^k/(Product_{j=k..k+b} 1 - x^j)).
a(n) = (2*n^2 + 10*n + 3 + (-1)^n * (2*n - 3))/16. - Birkas Gyorgy, Feb 20 2011
G.f.: (1 + x)/(1 - x)/(Q(0) - x^2 - x^3), where Q(k) = 1 + x^2 + x^3 + k*x*(1 + x^2) - x^2*(1 + x*(k + 2))*(1 + k*x)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jan 05 2014
G.f.: x*(1 + x - x^2)/((1 - x)^3*(1 + x)^2). - Colin Barker, Mar 05 2015
E.g.f.: (1/16)*( (3 + 2*x)*exp(-x) + (3 + 12*x + 2*x^2)*exp(x) ). - G. C. Greubel, Jul 18 2023
a(n) = A152919(n+1)/2. - Ridouane Oudra, Oct 29 2024
Comments