cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117142 Number of partitions of n in which any two parts differ by at most 2.

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 10, 14, 15, 20, 21, 27, 28, 35, 36, 44, 45, 54, 55, 65, 66, 77, 78, 90, 91, 104, 105, 119, 120, 135, 136, 152, 153, 170, 171, 189, 190, 209, 210, 230, 231, 252, 253, 275, 276, 299, 300, 324, 325, 350, 351, 377, 378, 405, 406, 434, 435, 464, 465
Offset: 1

Views

Author

Emeric Deutsch, Feb 27 2006

Keywords

Comments

Equals row sums of triangle A177991. - Gary W. Adamson, May 16 2010
Positive numbers that are either triangular (A000217) or triangular minus 1 (A000096). - Jon E. Schoenfield, Jun 12 2010

Examples

			a(6) = 9 because we have
  1: [6],
  2: [4, 2],
  3: [3, 3],
  4: [3, 2, 1],
  5: [3, 1, 1, 1],
  6: [2, 2, 2],
  7: [2, 2, 1, 1],
  8: [2, 1, 1, 1, 1],
  9: [1, 1, 1, 1, 1, 1]
([5,1] and [4,1,1] do not qualify).
		

Crossrefs

Column k=2 of A194621. - Alois P. Heinz, Oct 17 2012

Programs

  • GAP
    List([1..60],n->(2*n^2+10*n+3+(-1)^n*(2*n-3))/16); # Muniru A Asiru, Dec 21 2018
    
  • Magma
    [(2*n*(n+5) +3 +(-1)^n*(2*n-3))/16: n in [1..60]]; // G. C. Greubel, Jul 18 2023
    
  • Maple
    g:=sum(x^k/(1-x^k)/(1-x^(k+1))/(1-x^(k+2)),k=1..75): gser:=series(g,x=0,70): seq(coeff(gser,x^n),n=1..65); with(combinat): for n from 1 to 7 do P:=partition(n): A:={}: for j from 1 to nops(P) do if P[j][nops(P[j])]-P[j][1]<3 then A:=A union {P[j]} else A:=A fi od: print(A); od: # this program yields the partitions
  • Mathematica
    Table[Count[IntegerPartitions[n], ?(Max[#] - Min[#] <= 2 &)], {n, 30}] (* _Birkas Gyorgy, Feb 20 2011 *)
    Table[(2*n^2 +10*n +3 +(-1)^n*(2*n-3))/16, {n,30}] (* Birkas Gyorgy, Feb 20 2011 *)
    Table[Sum[If[EvenQ[k], 1, (k+1)/2], {k,0,n}], {n,0,60}] (* Jon Maiga, Dec 21 2018 *)
  • PARI
    Vec(x*(x^2-x-1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Mar 05 2015
    
  • SageMath
    [(2*n*(n+5) +3 +(-1)^n*(2*n-3))/16 for n in range(1,61)] # G. C. Greubel, Jul 18 2023

Formula

G.f.: Sum_{k>=1} x^k/((1 - x^k)*(1 - x^(k + 1))*(1 - x^(k + 2))). More generally, the g.f. of the number of partitions in which any two parts differ by at most b is Sum_{k>=1} (x^k/(Product_{j=k..k+b} 1 - x^j)).
a(n) = (2*n^2 + 10*n + 3 + (-1)^n * (2*n - 3))/16. - Birkas Gyorgy, Feb 20 2011
G.f.: (1 + x)/(1 - x)/(Q(0) - x^2 - x^3), where Q(k) = 1 + x^2 + x^3 + k*x*(1 + x^2) - x^2*(1 + x*(k + 2))*(1 + k*x)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jan 05 2014
G.f.: x*(1 + x - x^2)/((1 - x)^3*(1 + x)^2). - Colin Barker, Mar 05 2015
a(n) = Sum_{k=0..n-1} A152271(k). - Jon Maiga, Dec 21 2018
E.g.f.: (1/16)*( (3 + 2*x)*exp(-x) + (3 + 12*x + 2*x^2)*exp(x) ). - G. C. Greubel, Jul 18 2023
a(n) = A152919(n+1)/2. - Ridouane Oudra, Oct 29 2024