A117178 Riordan array (c(x^2)/sqrt(1-4*x^2), x*c(x^2)), c(x) the g.f. of A000108.
1, 0, 1, 3, 0, 1, 0, 4, 0, 1, 10, 0, 5, 0, 1, 0, 15, 0, 6, 0, 1, 35, 0, 21, 0, 7, 0, 1, 0, 56, 0, 28, 0, 8, 0, 1, 126, 0, 84, 0, 36, 0, 9, 0, 1, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1, 462, 0, 330, 0, 165, 0, 55, 0, 11, 0, 1, 0, 792, 0, 495, 0, 220, 0, 66, 0, 12, 0, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; 3, 0, 1; 0, 4, 0, 1; 10, 0, 5, 0, 1; 0, 15, 0, 6, 0, 1; 35, 0, 21, 0, 7, 0, 1; 0, 56, 0, 28, 0, 8, 0, 1; 126, 0, 84, 0, 36, 0, 9, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[(1+(-1)^(n-k))*Binomial(n+1, Floor((n-k)/2))/2: k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 08 2022
-
Mathematica
T[n_, k_]:= Binomial[n+1, (n-k)/2]*(1+(-1)^(n-k))/2; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 08 2022 *)
-
SageMath
def A117178(n,k): return (1 + (-1)^(n-k))*binomial(n+1, (n-k)//2)/2 flatten([[A117178(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Aug 08 2022
Formula
T(n,k) = C(n+1, (n-k)/2) * (1 + (-1)^(n-k))/2.
Column k has e.g.f. Bessel_I(k,2x) + Bessel_I(k+2, 2x).
From G. C. Greubel, Aug 08 2022: (Start)
Sum_{k=0..n} T(n, k) = A058622(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = ((1+(-1)^n)/2) * A001791((n+2)/2).
T(2*n, n) = ((1+(-1)^n)/2) * A052203(n/2).
T(2*n+1, n) = ((1-(-1)^n)/2) * A224274((n+1)/2).
T(2*n-1, n-1) = ((1+(-1)^n)/2) * A224274(n/2). (End)
Comments