cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117178 Riordan array (c(x^2)/sqrt(1-4*x^2), x*c(x^2)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 3, 0, 1, 0, 4, 0, 1, 10, 0, 5, 0, 1, 0, 15, 0, 6, 0, 1, 35, 0, 21, 0, 7, 0, 1, 0, 56, 0, 28, 0, 8, 0, 1, 126, 0, 84, 0, 36, 0, 9, 0, 1, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1, 462, 0, 330, 0, 165, 0, 55, 0, 11, 0, 1, 0, 792, 0, 495, 0, 220, 0, 66, 0, 12, 0, 1
Offset: 0

Views

Author

Paul Barry, Mar 01 2006

Keywords

Comments

Row sums are A058622(n+1). Diagonal sums are A001791(n+1), with interpolated zeros. Inverse is A117179.
De-aerated and rows reversed, this matrix apparently becomes A014462. The nonzero antidiagonals are embedded in several entries and apparently contain partial sums of previous nonzero antidiagonals. - Tom Copeland, May 30 2017

Examples

			Triangle begins
    1;
    0,  1;
    3,  0,  1;
    0,  4,  0,  1;
   10,  0,  5,  0,  1;
    0, 15,  0,  6,  0,  1;
   35,  0, 21,  0,  7,  0,  1;
    0, 56,  0, 28,  0,  8,  0,  1;
  126,  0, 84,  0, 36,  0,  9,  0,  1;
		

Crossrefs

Programs

  • Magma
    [(1+(-1)^(n-k))*Binomial(n+1, Floor((n-k)/2))/2: k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 08 2022
    
  • Mathematica
    T[n_, k_]:= Binomial[n+1, (n-k)/2]*(1+(-1)^(n-k))/2;
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 08 2022 *)
  • SageMath
    def A117178(n,k): return (1 + (-1)^(n-k))*binomial(n+1, (n-k)//2)/2
    flatten([[A117178(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Aug 08 2022

Formula

T(n,k) = C(n+1, (n-k)/2) * (1 + (-1)^(n-k))/2.
Column k has e.g.f. Bessel_I(k,2x) + Bessel_I(k+2, 2x).
From G. C. Greubel, Aug 08 2022: (Start)
Sum_{k=0..n} T(n, k) = A058622(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = ((1+(-1)^n)/2) * A001791((n+2)/2).
T(2*n, n) = ((1+(-1)^n)/2) * A052203(n/2).
T(2*n+1, n) = ((1-(-1)^n)/2) * A224274((n+1)/2).
T(2*n-1, n-1) = ((1+(-1)^n)/2) * A224274(n/2). (End)