A117223 Numbers n such that Phi(n,x) is a flat cyclotomic polynomial of order three.
231, 399, 435, 465, 483, 651, 663, 741, 861, 885, 903, 915, 1113, 1173, 1209, 1281, 1311, 1335, 1353, 1443, 1479, 1533, 1581, 1599, 1653, 1743, 1833, 1947, 2163, 2211, 2235, 2247, 2265, 2301, 2337, 2379, 2409, 2485, 2667, 2685, 2715, 2829, 2877, 2915
Offset: 1
Keywords
Links
- David Broadhurst and T. D. Noe, Table of n, a(n) for n = 1..10000
- Gennady Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), 53-60.
- David Broadhurst, Flat ternary cyclotomic polynomials, in: Yahoo! group "primenumbers", May 2009. [Broken link]
- Phil Carmody and others, Cyclotomic polynomial puzzles, digest of 43 messages in primenumbers Yahoo group, May 9 - May 23, 2009.
- Nathan Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118-126.
- Carlo Sanna, A Survey on Coefficients of Cyclotomic Polynomials, arXiv:2111.04034 [math.NT], 2021.
Crossrefs
Cf. A117318 (fourth-order flat cyclotomic polynomials).
Programs
-
Mathematica
IsOrder3[n_] := (n>1) && OddQ[n] && Transpose[FactorInteger[n]][[2]] == {1,1,1}; PolyHeight[p_] := Max[Abs[CoefficientList[p,x]]]; Clear[x]; Select[Range[4000], IsOrder3[ # ] && PolyHeight[Cyclotomic[ #,x]]==1&]
-
PARI
A117223(n,show=0)={ my(pqr=1,f); while(n, matsize(f=factor(pqr+=2))[1]==3 & vecmax(f[,2])==1 & vecmax(abs(Vec(polcyclo(pqr))))==1 & n-- & show & print1(pqr", ")); pqr } \\ M. F. Hasler, May 15 2009
Comments