A013590 Numbers k such that Phi(k,x) is a cyclotomic polynomial containing a coefficient with an absolute value greater than one.
105, 165, 195, 210, 255, 273, 285, 315, 330, 345, 357, 385, 390, 420, 429, 455, 495, 510, 525, 546, 555, 561, 570, 585, 595, 609, 615, 627, 630, 645, 660, 665, 690, 705, 714, 715, 735, 759, 765, 770, 777, 780, 795, 805, 819, 825, 840, 855
Offset: 1
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1627
Crossrefs
Programs
-
Maple
isA013590 := proc(n) numtheory[cyclotomic](n,x) ; {coeffs(%,x)} ; map(abs,%) ; if % minus {1} = {} then false; else true; end if; end proc: for n from 1 do if isA013590(n) then print(n); end if; end do: # R. J. Mathar, Nov 28 2016
-
Mathematica
S[ n_ ] := For[ j=1; t=0, j
1 ]; If[ Length[ t ]!=0, Print[ j ] ] ]; S[ 856 ] f[n_] := Max@ Abs@ CoefficientList[ Cyclotomic[n, x], x]; Select[ Range@ 1000, f@# > 1 &] (* Robert G. Wilson v *) Select[Range[900],Max[Abs[CoefficientList[Cyclotomic[#,x],x]]]>1&] (* Harvey P. Dale, Mar 13 2013 *) -
PARI
is(n)=for(k=0,n,if(abs(polcoeff(polcyclo(n),k))>1,return(n)));0 for(n=1,1000,if(is(n),print1(n,", "))) \\ Derek Orr, Apr 22 2015
Extensions
Definition clarified by Harvey P. Dale, Mar 13 2013
New name from Michel Marcus, Apr 29 2018
Comments