cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A152940 Odd squarefree numbers n such that the cyclotomic polynomial Phi(n,x) has height 2.

Original entry on oeis.org

105, 165, 195, 255, 273, 285, 345, 357, 429, 455, 555, 561, 609, 615, 627, 645, 705, 715, 759, 777, 795, 805, 897, 957, 969, 987, 1001, 1005, 1015, 1023, 1045, 1065, 1085, 1095, 1105, 1131, 1185, 1221, 1239, 1245, 1265, 1295, 1407, 1419, 1435, 1455, 1491
Offset: 1

Views

Author

T. D. Noe, Dec 16 2008, Jan 09 2009

Keywords

Comments

The height of a polynomial is the maximum of the absolute value of its coefficients. Subsequence of A154430.

Crossrefs

Programs

A152941 Odd squarefree numbers n such that the cyclotomic polynomial Phi(n,x) has height 3.

Original entry on oeis.org

385, 595, 665, 935, 1155, 1235, 1309, 1463, 1495, 1729, 1855, 1955, 2065, 2261, 2465, 2665, 2795, 2821, 3045, 3059, 3115, 3145, 3289, 3451, 3619, 3655, 3857, 4123, 4277, 4389, 4403, 4433, 4669, 4697, 4745, 4807, 4879, 4935, 4945, 5015, 5083, 5117, 5285
Offset: 1

Views

Author

T. D. Noe, Dec 16 2008, Jan 09 2008

Keywords

Comments

The height of a polynomial is the maximum of the absolute value of its coefficients. Subsequence of A154430.

Crossrefs

Programs

A152942 Odd squarefree numbers n such that the cyclotomic polynomial Phi(n,x) has height 4.

Original entry on oeis.org

1365, 1995, 2415, 2431, 2737, 2849, 3003, 3255, 3315, 3553, 3689, 4081, 4147, 4199, 4305, 4485, 4515, 4543, 4991, 5593, 5681, 5865, 6045, 6105, 6251, 6405, 6409, 6555, 6721, 6851, 7049, 7395, 7469, 7665, 7667, 7755, 7777, 7905, 8547, 8715, 8835, 9165
Offset: 1

Views

Author

T. D. Noe, Dec 16 2008, Jan 09 2009

Keywords

Comments

The height of a polynomial is the maximum of the absolute value of its coefficients. Subsequence of A154430.

Crossrefs

Programs

A152943 Odd squarefree numbers n such that the cyclotomic polynomial Phi(n,x) has height 5.

Original entry on oeis.org

1785, 2145, 2717, 3705, 3795, 3885, 3927, 4785, 4845, 5005, 5115, 5187, 5291, 5313, 5655, 6765, 7035, 7215, 7293, 8211, 8265, 8385, 8569, 8855, 9269, 9435, 9735, 9867, 10065, 10545, 10659, 10857, 10965, 11055, 11339, 11685, 12243, 12597, 12673
Offset: 1

Views

Author

T. D. Noe, Dec 16 2008, Jan 09 2009

Keywords

Comments

The height of a polynomial is the maximum of the absolute value of its coefficients. Subsequence of A154430.

Crossrefs

Programs

A118678 Primitive orders of cyclotomic polynomials containing a coefficient with absolute value >= 2.

Original entry on oeis.org

105, 165, 195, 255, 273, 285, 345, 357, 385, 429, 455, 555, 561, 595, 609, 615, 627, 645, 665, 705, 715, 759, 777, 795, 805, 897, 935, 957, 969, 987, 1001, 1005, 1015, 1023, 1045, 1065, 1085, 1095, 1105, 1131, 1185, 1221, 1235, 1239, 1245, 1265, 1295
Offset: 1

Views

Author

Max Alekseyev, May 19 2006

Keywords

Comments

All elements of A013590 with no proper divisors belonging to A013590.

Crossrefs

A344706 Odd squarefree numbers k such that the expansion of the inverse of the k-th cyclotomic polynomial has a coefficient other than -1, 0 or 1.

Original entry on oeis.org

561, 595, 665, 741, 935, 1001, 1105, 1155, 1173, 1309, 1365, 1463, 1479, 1495, 1615, 1729, 1767, 1785, 1955, 1995, 2001, 2015, 2093, 2145, 2185, 2233, 2261, 2387, 2415, 2431, 2465, 2665, 2717, 2737, 2755, 2795, 2805, 2829, 2849, 3003, 3045, 3059, 3135, 3145, 3255
Offset: 1

Views

Author

Jianing Song, May 26 2021

Keywords

Comments

Odd squarefree numbers in A344673.
Note that (i) for odd k, Phi_{2*k}(x) = Phi_k(-x); (ii) for prime p dividing k, Phi_{p*k}(x) = Phi_k(x^p). As a result, every term of A344673 can be written as 2^e * (p_1)^(e_1) * (p_2)^(e_2) * ... (p_r)^(e_r) * k, where k is a term of this sequence, p_1, p_2, ..., p_r are the distinct prime factors of k.

Examples

			665 = 5 * 7 * 19, 1/Phi_665(x) = 1 - x + x^5 - x^6 + x^7 - x^8 + x^10 - x^11 + x^12 - x^13 + x^14 - x^16 + x^17 - x^18 + 2*x^19 + ..., the coefficient of x^19 is 2, so 665 is a term.
1001 = 7 * 11 * 13, 1/Phi_1001(x) = 1 - x + x^7 - x^8 + x^11 - x^12 + x^13 - x^15 + x^18 - x^19 + x^20 - x^23 + x^24 - x^30 + x^31 + x^33 - x^34 + x^35 - x^36 + x^39 - x^41 + x^42 - x^43 + x^44 - x^45 + 2*x^46 + ..., the coefficient of x^46 is 2, so 1001 is a term.
		

Crossrefs

Proper subsequence of A344673.

Programs

  • Mathematica
    fQ[n_] := Max@ Union@ Abs@ CoefficientList[ Simplify[(x^n - 1)/Cyclotomic[n, x]], x] > 1; Select[1 + 2Range@ 1500, SquareFreeQ@# && fQ@# &] (* Robert G. Wilson v, May 29 2021 *)
  • PARI
    isA344706(k) = (k%2==1) && issquarefree(k) && (vecmax(abs(Vec((x^k-1)/polcyclo(k))))>=2)

A189936 Odd numbers in A076763.

Original entry on oeis.org

105, 165, 195, 255, 273, 315, 345, 357, 385, 399, 465, 483, 525, 555, 585, 627, 663, 693, 705, 735, 765, 777, 795, 897, 915, 957, 975, 1005, 1095, 1113, 1155, 1173, 1185, 1281, 1295, 1305, 1353, 1365, 1515, 1545, 1575, 1617, 1677, 1683, 1725, 1755, 1785, 1815, 1935, 1953
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 01 2011

Keywords

Crossrefs

Programs

  • Maple
    omega := proc(n) nops( numtheory[factorset](n)) ; end proc:
    isA076763 := proc(n) omega(n) > omega(n-1) and omega(n) > omega(n+1) ; end proc:
    isA189936 := proc(n) type(n,'odd') and isA076763(n) ; end proc:
    for n from 1 to 2000 by 2 do if isA189936(n) then printf("%d,",n) ; end if; end do;  # R. J. Mathar, May 26 2011
  • Mathematica
    Select[Range[1, 2000, 2], PrimeNu[# - 1] < PrimeNu[#] > PrimeNu[# + 1]&] (* Jean-François Alcover, Nov 14 2016 *)
    Select[#[[2,1]]&/@Select[Partition[Table[{n,PrimeNu[n]},{n,2000}],3,1], #[[1,2]] <#[[2,2]]>#[[3,2]]&],OddQ] (* Harvey P. Dale, Sep 15 2019 *)

Formula

a(n) = A005408(k) = A076763(m).

Extensions

Corrected by R. J. Mathar, May 26 2011
Showing 1-7 of 7 results.