cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A154430 Odd squarefree numbers n such that the cyclotomic polynomial Phi(n,x) has height > 1.

Original entry on oeis.org

105, 165, 195, 255, 273, 285, 345, 357, 385, 429, 455, 555, 561, 595, 609, 615, 627, 645, 665, 705, 715, 759, 777, 795, 805, 897, 935, 957, 969, 987, 1001, 1005, 1015, 1023, 1045, 1065, 1085, 1095, 1105, 1131, 1155, 1185, 1221, 1235, 1239, 1245, 1265
Offset: 1

Views

Author

T. D. Noe, Jan 09 2009

Keywords

Comments

The height of a polynomial is the maximum of the absolute value of its coefficients. Different from A118678, which excludes terms that are a multiple of smaller terms.

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], OddQ[#] && SquareFreeQ[#] && Max[ Abs[ CoefficientList[ Cyclotomic[#, x], x]]] > 1&] (* Jean-François Alcover, Nov 14 2016 *)
  • PARI
    is(n)=issquarefree(n) && n%2 && vecmax(abs(Vec(polcyclo(n))))>1 \\ Charles R Greathouse IV, Nov 05 2017

A189936 Odd numbers in A076763.

Original entry on oeis.org

105, 165, 195, 255, 273, 315, 345, 357, 385, 399, 465, 483, 525, 555, 585, 627, 663, 693, 705, 735, 765, 777, 795, 897, 915, 957, 975, 1005, 1095, 1113, 1155, 1173, 1185, 1281, 1295, 1305, 1353, 1365, 1515, 1545, 1575, 1617, 1677, 1683, 1725, 1755, 1785, 1815, 1935, 1953
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 01 2011

Keywords

Crossrefs

Programs

  • Maple
    omega := proc(n) nops( numtheory[factorset](n)) ; end proc:
    isA076763 := proc(n) omega(n) > omega(n-1) and omega(n) > omega(n+1) ; end proc:
    isA189936 := proc(n) type(n,'odd') and isA076763(n) ; end proc:
    for n from 1 to 2000 by 2 do if isA189936(n) then printf("%d,",n) ; end if; end do;  # R. J. Mathar, May 26 2011
  • Mathematica
    Select[Range[1, 2000, 2], PrimeNu[# - 1] < PrimeNu[#] > PrimeNu[# + 1]&] (* Jean-François Alcover, Nov 14 2016 *)
    Select[#[[2,1]]&/@Select[Partition[Table[{n,PrimeNu[n]},{n,2000}],3,1], #[[1,2]] <#[[2,2]]>#[[3,2]]&],OddQ] (* Harvey P. Dale, Sep 15 2019 *)

Formula

a(n) = A005408(k) = A076763(m).

Extensions

Corrected by R. J. Mathar, May 26 2011
Showing 1-2 of 2 results.