cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A154430 Odd squarefree numbers n such that the cyclotomic polynomial Phi(n,x) has height > 1.

Original entry on oeis.org

105, 165, 195, 255, 273, 285, 345, 357, 385, 429, 455, 555, 561, 595, 609, 615, 627, 645, 665, 705, 715, 759, 777, 795, 805, 897, 935, 957, 969, 987, 1001, 1005, 1015, 1023, 1045, 1065, 1085, 1095, 1105, 1131, 1155, 1185, 1221, 1235, 1239, 1245, 1265
Offset: 1

Views

Author

T. D. Noe, Jan 09 2009

Keywords

Comments

The height of a polynomial is the maximum of the absolute value of its coefficients. Different from A118678, which excludes terms that are a multiple of smaller terms.

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], OddQ[#] && SquareFreeQ[#] && Max[ Abs[ CoefficientList[ Cyclotomic[#, x], x]]] > 1&] (* Jean-François Alcover, Nov 14 2016 *)
  • PARI
    is(n)=issquarefree(n) && n%2 && vecmax(abs(Vec(polcyclo(n))))>1 \\ Charles R Greathouse IV, Nov 05 2017

A137979 Highest coefficient occurring in the factorization of x^n - 1 over the reals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Ian Miller, Feb 25 2008

Keywords

Comments

Based on a comment in Mathematica helpfile ref/Factor - Neat Examples.
The first factorization of x^n - 1 in which a 2 appears as a coefficient is for n=105.
Different from A160338, see comment there.

Examples

			a(4) = 1 because x^4 - 1 = (x^2+1)(x+1)(x-1) and the highest coefficient of these three terms is 1.
The first time a 2 appears is at n=105, where the factorization is:
(x-1)*(x^6+x^5+x^4+x^3+x^2+x+1)*(x^4+x^3+x^2+x+1)*
(x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1)*
(x^2+x+1)*(x^12-x^11+x^9-x^8+x^6-x^4+x^3-x+1)*
(x^8-x^7+x^5-x^4+x^3-x+1)*
(x^48+x^47+x^46-x^43-x^42-2*x^41-x^40-x^39+x^36+x^35+x^34+x^33+x^32+x^31-x^28-x^26-x^24-x^22-x^20+x^17+x^16+x^15+x^14+x^13+x^12-x^9-x^8-2*x^7-x^6-x^5+x^2+x+1). - _N. J. A. Sloane_, Apr 18 2008
		

Crossrefs

Programs

  • Mathematica
    Table[Max[Abs[Flatten[CoefficientList[Transpose[FactorList[x^i - 1]][[1]], x]]]], {i, 1, 1000}]
  • PARI
    a(n) = {my(f = factor(x^n-1)); vecmax(vector(#f~, k, vecmax(apply(x->abs(x), Vec(f[k,1])))));} \\ Michel Marcus, Dec 05 2018

A118678 Primitive orders of cyclotomic polynomials containing a coefficient with absolute value >= 2.

Original entry on oeis.org

105, 165, 195, 255, 273, 285, 345, 357, 385, 429, 455, 555, 561, 595, 609, 615, 627, 645, 665, 705, 715, 759, 777, 795, 805, 897, 935, 957, 969, 987, 1001, 1005, 1015, 1023, 1045, 1065, 1085, 1095, 1105, 1131, 1185, 1221, 1235, 1239, 1245, 1265, 1295
Offset: 1

Views

Author

Max Alekseyev, May 19 2006

Keywords

Comments

All elements of A013590 with no proper divisors belonging to A013590.

Crossrefs

A318884 a(n) is the sum of absolute values of the coefficients in the n-th cyclotomic polynomial.

Original entry on oeis.org

2, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 7, 2, 17, 3, 19, 5, 9, 11, 23, 3, 5, 13, 3, 7, 29, 7, 31, 2, 15, 17, 17, 3, 37, 19, 17, 5, 41, 9, 43, 11, 7, 23, 47, 3, 7, 5, 23, 13, 53, 3, 17, 7, 25, 29, 59, 7, 61, 31, 9, 2, 31, 15, 67, 17, 31, 17, 71, 3, 73, 37, 7, 19, 31, 17, 79, 5, 3, 41, 83, 9, 41, 43, 39, 11, 89
Offset: 1

Views

Author

Antti Karttunen, Sep 10 2018

Keywords

Comments

Differs from A051664 in the positions given by A013590, thus for the first time at n=105, where a(105) = 35, while A051664(105) = 33 as the 105th cyclotomic polynomial is the first one that has a coefficient other than 1, 0, or -1.

Crossrefs

Programs

  • Mathematica
    Array[Total@ Abs@ CoefficientList[Cyclotomic[#, x], x] &, 89] (* Michael De Vlieger, Sep 10 2018 *)
  • PARI
    A318884(n) = vecsum(apply(abs,Vec(polcyclo(n)))); \\ Antti Karttunen, Sep 10 2018

A344673 Numbers k such that the expansion of the inverse of the k-th cyclotomic polynomial has a coefficient other than -1, 0 or 1.

Original entry on oeis.org

561, 595, 665, 741, 935, 1001, 1105, 1122, 1155, 1173, 1190, 1309, 1330, 1365, 1463, 1479, 1482, 1495, 1615, 1683, 1729, 1767, 1785, 1870, 1955, 1995, 2001, 2002, 2015, 2093, 2145, 2185, 2210, 2223, 2233, 2244, 2261, 2310, 2346, 2380, 2387, 2415, 2431, 2465, 2618
Offset: 1

Views

Author

Jianing Song, May 26 2021

Keywords

Comments

Define Psi_n(x) = (x^n-1)/Phi_n(x), with Phi_n(x) the n-th cyclotomic polynomial, then 1/Phi_n(x) = -Psi_n(x) * (1 + x^n + x^(2n) + ...), hence the period of coefficients in the expansion of 1/Phi_n(x) is n.
For odd k, k is a term if and only 2*k is a term.
For prime p dividing k, k is a term if and only if p*k is a term.
From Robert G. Wilson v, Jun 04 2021: (Start)
The period of the expansion of Psi(n) is A062830(n).
Terms are neither prime nor semiprime.
Least k having a run of j consecutive terms, for j >= 0: 561, 2001, 22630, 68263, ...
(End)

Examples

			1/Phi_561(x) = 1 - x + x^3 - x^4 + x^6 - x^7 + x^9 - x^10 + x^11 - x^13 + x^14 - x^16 + 2*x^17 + ..., the coefficient of x^17 is 2, so 561 is a term.
1/Phi_595(x) = 1 - x + x^5 - x^6 + x^7 - x^8 + x^10 - x^11 + x^12 - x^13 + x^14 - x^16 + 2*x^17 + ..., the coefficient of x^17 is 2, so 595 is a term.
		

Crossrefs

A344706 is a proper subsequence.

Programs

  • Mathematica
    fQ[n_] := Max@ Union@ Abs@ CoefficientList[ Simplify[(x^n - 1)/Cyclotomic[n, x]], x] > 1; Select[ Range@ 2650, fQ] (* Robert G. Wilson v, May 26 2021 *)
  • PARI
    isA344673(k) = (vecmax(abs(Vec((x^k-1)/polcyclo(k))))>=2)

A374137 Odd numbers k such that the cyclotomic polynomial Phi(k,x) has height 1, i.e., whose coefficients are all -1, 0, or 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151
Offset: 1

Views

Author

Antti Karttunen, Jul 06 2024

Keywords

Crossrefs

Cf. A374136 (characteristic function).
Setwise difference A005408 \ A013590.
Subsequences: A152955, A117223, A117318.
Appears to be a subsequence of A089684, from which this differs for the first time at n=125, where a(125) = 257, which misses A089684(125) = 255.

Programs

A189936 Odd numbers in A076763.

Original entry on oeis.org

105, 165, 195, 255, 273, 315, 345, 357, 385, 399, 465, 483, 525, 555, 585, 627, 663, 693, 705, 735, 765, 777, 795, 897, 915, 957, 975, 1005, 1095, 1113, 1155, 1173, 1185, 1281, 1295, 1305, 1353, 1365, 1515, 1545, 1575, 1617, 1677, 1683, 1725, 1755, 1785, 1815, 1935, 1953
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 01 2011

Keywords

Crossrefs

Programs

  • Maple
    omega := proc(n) nops( numtheory[factorset](n)) ; end proc:
    isA076763 := proc(n) omega(n) > omega(n-1) and omega(n) > omega(n+1) ; end proc:
    isA189936 := proc(n) type(n,'odd') and isA076763(n) ; end proc:
    for n from 1 to 2000 by 2 do if isA189936(n) then printf("%d,",n) ; end if; end do;  # R. J. Mathar, May 26 2011
  • Mathematica
    Select[Range[1, 2000, 2], PrimeNu[# - 1] < PrimeNu[#] > PrimeNu[# + 1]&] (* Jean-François Alcover, Nov 14 2016 *)
    Select[#[[2,1]]&/@Select[Partition[Table[{n,PrimeNu[n]},{n,2000}],3,1], #[[1,2]] <#[[2,2]]>#[[3,2]]&],OddQ] (* Harvey P. Dale, Sep 15 2019 *)

Formula

a(n) = A005408(k) = A076763(m).

Extensions

Corrected by R. J. Mathar, May 26 2011

A317272 Numbers k such that Phi(k,x) is a cyclotomic polynomial with middle coefficient different from -1, 0, 1.

Original entry on oeis.org

385, 770, 1155, 1365, 1540, 1925, 2065, 2145, 2310, 2415, 2465, 2695, 2717, 2730, 2737, 2821, 2849, 3003, 3080, 3255, 3315, 3465, 3619, 3850, 4095, 4130, 4199, 4235, 4277, 4290, 4543, 4620, 4785, 4830, 4845, 4879, 4930, 4991
Offset: 1

Views

Author

Greg Dresden, Jul 25 2018

Keywords

Comments

n is in the sequence if and only if A204455(n) is in the sequence. - Robert Israel, Apr 17 2019

Examples

			385 is the first item in the list because Phi(385,x) is the first cyclotomic polynomial with middle coefficient different from -1,0,1 (the middle term is -3x^120)
		

Crossrefs

Cf. A013590, A023022 (phi(n)/2), A204455.

Programs

  • Maple
    filter:= proc(n) local p,d;
       p:= numtheory:-cyclotomic(n,x);
       d:= degree(p,x);
       abs(coeff(p, x, d/2))>1
    end proc:
    select(filter, [$3..5000]); # Robert Israel, Apr 17 2019
  • Mathematica
    Select[Range[3, 4000],
    Abs[Coefficient[Cyclotomic[#, x], x, EulerPhi[#]/2]] > 1 &]
  • PARI
    isok(n) = (n > 2) && (abs(polcoeff(polcyclo(n), eulerphi(n)/2)) > 1); \\ Michel Marcus, Aug 02 2018

A256575 Nonsquarefree orders of cyclotomic polynomials containing a coefficient with an absolute value greater than one.

Original entry on oeis.org

315, 420, 495, 525, 585, 630, 660, 735, 765, 780, 819, 825, 840, 855, 945, 975, 990, 1020, 1035, 1050, 1071, 1092, 1140, 1170, 1260, 1275, 1287, 1320, 1380, 1425, 1428, 1470, 1485, 1530, 1540, 1560, 1575, 1638, 1650, 1665, 1680, 1683, 1710, 1716, 1725, 1755, 1815, 1820, 1827, 1845, 1881, 1890, 1911, 1925
Offset: 1

Views

Author

Derek Orr, Apr 22 2015

Keywords

Comments

Numbers in A013590 that are not squarefree.

Crossrefs

Programs

  • PARI
    is(n)=if (!issquarefree(n), for(k=0, n, if(abs(polcoeff(polcyclo(n), k))>1, return(n))); 0)
    for(n=1, 10^4, if(is(n), print1(n, ", "))) \\ edited by Michel Marcus, Apr 21 2018

A256638 Orders n of cyclotomic polynomials containing a coefficient with an absolute value greater than one, with n not divisible by 5.

Original entry on oeis.org

273, 357, 429, 546, 561, 609, 627, 714, 759, 777, 819, 858, 897, 957, 969, 987, 1001, 1023, 1071, 1092, 1122, 1131, 1218, 1221, 1239, 1254, 1287, 1309, 1407, 1419, 1428, 1463, 1491, 1518, 1547, 1551, 1554, 1638, 1659, 1677, 1683, 1716, 1729, 1749, 1767, 1771, 1794, 1827, 1869, 1881, 1887, 1911, 1914, 1938
Offset: 1

Views

Author

Derek Orr, Apr 22 2015

Keywords

Comments

Numbers in A013590 that are not divisible by 5.

Crossrefs

Programs

  • PARI
    is(n)=if(n%5, for(k=0, n, if(abs(polcoeff(polcyclo(n), k))>1, return(n))); 0)
    for(n=1, 10^4, if(is(n), print1(n, ", "))) \\ edited by Michel Marcus, Apr 21 2018
Showing 1-10 of 10 results.