cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117226 Number of permutations of [n] avoiding the consecutive pattern 1243.

Original entry on oeis.org

1, 1, 2, 6, 23, 110, 630, 4204, 32054, 274914, 2619692, 27459344, 313990182, 3889585408, 51888955808, 741668212080, 11307669002720, 183174676857608, 3141820432768752, 56882461258572976, 1084056190235653304, 21692744773505849952, 454758269790599361968
Offset: 0

Views

Author

Steven Finch, Apr 26 2006

Keywords

Comments

a(n) is the number of permutations on [n] that avoid the consecutive pattern 1243. It is the same as the number of permutations which avoid 3421, 4312 or 2134.

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1, 0), j=`if`(t<0, -t, 1)..u)+
          add(b(u+j-1, o-j, `if`(t=0, j, -j)), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 07 2013
  • Mathematica
    A[x_]:=Integrate[AiryAi[ -t],{t,0,x}]; B[x_]:=Integrate[AiryBi[ -t],{t,0,x}];
    c=-3^(2/3)*Gamma[2/3]/2; d=-3^(1/6)*Gamma[2/3]/2;
    a[n_]:=SeriesCoefficient[1/(c*A[x]+d*B[x]+1),{x,0,n}]*n!; Table[a[n],{n,0,10}] (* fixed by Vaclav Kotesovec, Aug 23 2014 *)
    (* constant d: *) 1/x/.FindRoot[3^(2/3)*Gamma[2/3]/2 * Integrate[AiryAi[-t],{t,0,x}] + 3^(1/6)*Gamma[2/3]/2 * Integrate[AiryBi[-t],{t,0,x}]==1,{x,1},WorkingPrecision->50] (* Vaclav Kotesovec, Aug 23 2014 *)

Formula

a(n) ~ c * d^n * n!, where d = 0.952891423325053197208702817349165942637814..., c = 1.169657787464830219717093446929792145316... . - Vaclav Kotesovec, Aug 23 2014
From Petros Hadjicostas, Nov 01 2019: (Start)
E.g.f.: 1/W(z), where W(z) := 1 + Sum_{n >= 0} (-1)^(n+1)* z^(3*n+1)/(b(n)*(3*n+1)) with b(n) = A176730(n) = (3*n)!/(3^n*(1/3)_n). (Here (x)_n = x*(x + 1)*...*(x + n - 1) is the Pochhammer symbol, or rising factorial, which is denoted by (x)^n in some papers and books.) The function W(z) satisfies the o.d.e. W'''(z) + z*W'(z) = 0 with W(0) = 1, W'(0) = -1, and W''(0) = 0. [See Theorem 4.3 (Case 1243 with u = 0) in Elizalde and Noy (2003).]
a(n) = Sum_{m = 0..floor((n-1)/3)} (-3)^m * (1/3)_m * binomial(n, 3*m+1) * a(n-3*m-1) for n >= 1 with a(0) = 1. (End)