A117278 Triangle read by rows: T(n,k) is the number of partitions of n into k prime parts (n>=2, 1<=k<=floor(n/2)).
1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 1, 1, 1, 1, 0, 2, 2, 1, 0, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 0, 2, 1, 3, 2, 1, 1, 0, 1, 3, 2, 3, 2, 1, 0, 2, 2, 3, 3, 2, 1, 1, 1, 0, 4, 3, 3, 3, 2, 1, 0, 2, 2, 4, 3, 4, 2, 1, 1, 1, 1, 3, 4, 5, 3, 3, 2, 1, 0, 2, 2, 6, 4, 4, 4, 2, 1, 1, 0, 1, 5, 3, 6
Offset: 2
Examples
T(12,3) = 2 because we have [7,3,2] and [5,5,2]. Triangle starts: 1; 1; 0, 1; 1, 1; 0, 1, 1; 1, 1, 1; 0, 1, 1, 1; 0, 1, 2, 1; ...
Links
- Alois P. Heinz, Rows n = 2..200, flattened
Crossrefs
Programs
-
Maple
g:=1/product(1-t*x^(ithprime(j)),j=1..30): gser:=simplify(series(g,x=0,30)): for n from 2 to 22 do P[n]:=sort(coeff(gser,x^n)) od: for n from 2 to 22 do seq(coeff(P[n],t^j),j=1..floor(n/2)) od; # yields sequence in triangular form # second Maple program: b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i<1, [], zip((x, y)->x+y, b(n, i-1), [0, `if`(ithprime(i)>n, [], b(n-ithprime(i), i))[]], 0))) end: T:= n-> subsop(1=NULL, b(n, numtheory[pi](n)))[]: seq(T(n), n=2..25); # Alois P. Heinz, Nov 16 2012
-
Mathematica
(* As triangle: *) nn=20;a=Product[1/(1-y x^i),{i,Table[Prime[n],{n,1,nn}]}];Drop[CoefficientList[Series[a,{x,0,nn}],{x,y}],2,1]//Grid (* Geoffrey Critzer, Oct 30 2012 *)
-
PARI
parts(n, pred)={prod(k=1, n, if(pred(k), 1/(1-y*x^k) + O(x*x^n), 1))} {my(n=15); apply(p->Vecrev(p/y), Vec(parts(n, isprime)-1))} \\ Andrew Howroyd, Dec 28 2017
Formula
G.f.: G(t,x) = -1+1/product(1-tx^(p(j)), j=1..infinity), where p(j) is the j-th prime.
Comments