A117279 Triangle read by rows: T(n,k) is number of labeled bipartite graphs with n nodes and k edges.
1, 1, 1, 1, 1, 3, 3, 1, 6, 15, 16, 3, 1, 10, 45, 110, 140, 60, 10, 1, 15, 105, 435, 1125, 1701, 1200, 480, 105, 10, 1, 21, 210, 1295, 5355, 14952, 26572, 26670, 17535, 7840, 2331, 420, 35, 1, 28, 378, 3220, 19075, 81228, 246414, 507424, 666015, 620900, 431368
Offset: 0
Examples
Triangle begins: 1; 1; 1, 1; 1, 3, 3; 1, 6, 15, 16, 3; 1, 10, 45, 110, 140, 60, 10; ...
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1403 (rows 0..25)
Crossrefs
Programs
-
Mathematica
nn=10;f[x_,y_]:=Sum[Sum[Binomial[n,k](1+y)^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Range[0,nn]!CoefficientList[Series[Exp[Log[f[x,y]]/2],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Sep 05 2013 *)
-
PARI
T(n)={[Vecrev(p) | p<-Vec(serlaplace(sqrt(sum(k=0, n, exp(x*(1+y)^k + O(x*x^n))*x^k/k! ))))]} { my(A=T(6)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 10 2022
Formula
E.g.f.: sqrt(Sum_{n>=0} exp(x*(1+q)^n)*x^n/n!).