cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A236386 Numbers m such that phi(m) is an oblong number.

Original entry on oeis.org

3, 4, 6, 7, 9, 13, 14, 18, 21, 25, 26, 28, 31, 33, 36, 42, 43, 44, 49, 50, 62, 66, 73, 86, 87, 91, 95, 98, 111, 116, 117, 121, 135, 146, 148, 152, 157, 161, 169, 174, 182, 190, 201, 207, 211, 216, 222, 228, 234, 237, 241, 242, 252, 268, 270, 287, 289, 305
Offset: 1

Views

Author

Joseph L. Pe, Jan 24 2014

Keywords

Comments

An oblong number (A002378) is of the form k*(k+1) where k is a natural number.
From Bernard Schott, Feb 27 2023: (Start)
Subsequence of primes is A002383 because in this case phi(k^2+k+1) = k*(k+1).
Subsequence of oblong numbers is A359847 where k and phi(k) are both oblong numbers. (End)

Examples

			phi(13) = 12 = 3*4, an oblong number; so 13 is a term of the sequence.
		

Crossrefs

Similar, but where phi(m) is: A039770 (square), A039771 (cube), A078164 (biquadrate), A096503 (repdigit), A117296 (palindrome), A360944 (triangular).

Programs

  • Maple
    filter := m -> issqr(1 + 4*phi(m)) : select(filter, [$(1 .. 700)]); # Bernard Schott, Feb 26 2023
  • Mathematica
    Select[Range[500], IntegerQ@Sqrt[1 + 4*EulerPhi[#]] &] (* Giovanni Resta, Jan 24 2014 *)
  • PARI
    isok(m) = my(t=eulerphi(m)); !(t%2) && ispolygonal(t/2, 3); \\ Michel Marcus, Feb 27 2023
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.primetest import is_square
    from sympy import totient
    def A236386_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:is_square((totient(n)<<2)+1), count(max(1,startvalue)))
    A236386_list = list(islice(A236386_gen(),20)) # Chai Wah Wu, Feb 28 2023

Extensions

a(16)-a(58) from Giovanni Resta, Jan 24 2014

A360944 Numbers m such that phi(m) is a triangular number, where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 7, 9, 11, 14, 18, 22, 29, 37, 57, 58, 63, 67, 74, 76, 79, 108, 114, 126, 134, 137, 143, 155, 158, 175, 183, 191, 211, 225, 231, 244, 248, 274, 277, 286, 308, 310, 329, 341, 350, 366, 372, 379, 382, 396, 417, 422, 423, 450, 453, 462, 554, 556, 604, 623, 631, 658, 682
Offset: 1

Views

Author

Bernard Schott, Feb 26 2023

Keywords

Comments

Subsequence of primes is A055469 because in this case phi(k(k+1)/2+1) = k(k+1)/2.
Subsequence of triangular numbers is A287472.

Examples

			phi(57) = 36 = 8*9/2, a triangular number; so 57 is a term of the sequence.
		

Crossrefs

Similar, but with phi(m) is: A039770 (square), A078164 (biquadrate), A096503 (repdigit), A117296 (palindrome), A236386 (oblong).

Programs

  • Maple
    filter := m ->  issqr(1 + 8*numtheory:-phi(m)) : select(filter, [$(1 .. 700)]);
  • Mathematica
    Select[Range[700], IntegerQ[Sqrt[8 * EulerPhi[#] + 1]] &] (* Amiram Eldar, Feb 27 2023 *)
  • PARI
    isok(m) = ispolygonal(eulerphi(m), 3); \\ Michel Marcus, Feb 27 2023
    
  • Python
    from itertools import islice, count
    from sympy.ntheory.primetest import is_square
    from sympy import totient
    def A360944_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:is_square((totient(n)<<3)+1), count(max(1,startvalue)))
    A360944_list = list(islice(A360944_gen(),20)) # Chai Wah Wu, Feb 28 2023
Showing 1-2 of 2 results.