A117322 a(n) = prime(n) modulo semiprime(n).
2, 3, 5, 7, 11, 13, 17, 19, 23, 3, 31, 3, 6, 5, 8, 7, 10, 10, 12, 14, 15, 17, 18, 20, 23, 24, 21, 22, 23, 26, 36, 38, 43, 44, 43, 40, 42, 45, 48, 52, 57, 58, 62, 60, 63, 58, 69, 80, 82, 83, 78, 81, 82, 90, 91, 94, 92, 93, 94, 96, 96, 99, 106, 109, 110, 112, 125, 128, 134, 135
Offset: 1
Examples
a(1) = 2 mod 4 = 2. a(2) = 3 mod 6 = 3. a(3) = 5 mod 9 = 5. a(4) = 7 mod 10 = 7. a(5) = 11 mod 14 = 11.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
SemiPrimePi[n_] := Sum[PrimePi[n/Prime@i] - i + 1, {i, PrimePi@Sqrt@n}]; SemiPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[SemiPrimePi[a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ Mod[Prime@n, SemiPrime@n], {n, 70}] (* Robert G. Wilson v, May 01 2006 *) Module[{nn=300,sprs},sprs=Select[Range[nn],PrimeOmega[#]==2&];Mod[ #[[1]],#[[2]]]&/@Thread[{Prime[Range[Length[sprs]]],sprs}]] (* Harvey P. Dale, Nov 21 2021 *)