A117397 Column 3 of triangle A117396.
1, 4, 19, 109, 739, 5779, 51139, 504739, 5494339, 65369539, 843747139, 11741033539, 175200329539, 2790549065539, 47251477577539, 847548190793539, 16053185741897539, 320165936763977539, 6706533708227657539, 147206624680428617539, 3378708717041050697539
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 4*x + 19*x^2 + 109*x^3 + 739*x^4 + 5779*x^5 + 51139*x^6 + 504739*x^7 + 5494339*x^8 + 65369539*x^9 + 843747139*x^10 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..445
Crossrefs
Programs
-
Magma
[(&+[Factorial(j): j in [2..n+3]])/8: n in [0..30]]; // G. C. Greubel, Sep 05 2022
-
Maple
a:=n->sum(j!/8,j=2..n): seq(a(n), n=3..21); # Zerinvary Lajos, Jan 08 2007
-
Mathematica
Table[Sum[i!/8, {i, 2, n}], {n, 3, 21}] (* Zerinvary Lajos, Jul 12 2009 *)
-
PARI
{a(n)=1+sum(k=4,n+3,k!)*3/4!} for(n=0,25,print1(a(n),", "))
-
SageMath
[sum(factorial(j) for j in (2..n+3))/8 for n in (0..30)] # G. C. Greubel, Sep 05 2022
Formula
G.f. satisfies A(x) = (1-x)/(1 - 5*x + 5*x^2) * (1 + x^2*A'(x)).
a(n) = 1 + Sum_{k=4..n+3} k!*3/4! for n > 0, with a(0)=1.
G.f.: W(0)/(8*x*(1-x)) -1/(4*x), where W(k) = 1 + 1/( 1 - x*(k+3)/( x*(k+3) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 20 2013
G.f.: (Sum_{n>=0} (n+2)!*x^n)/(8*x*(1-x)) - 1/(4*x). - Sergei N. Gladkovskii, Aug 20 2013
Comments