A117440 A cyclically signed version of Pascal's triangle.
1, 1, 1, -1, 2, 1, -1, -3, 3, 1, 1, -4, -6, 4, 1, 1, 5, -10, -10, 5, 1, -1, 6, 15, -20, -15, 6, 1, -1, -7, 21, 35, -35, -21, 7, 1, 1, -8, -28, 56, 70, -56, -28, 8, 1, 1, 9, -36, -84, 126, 126, -84, -36, 9, 1, -1, 10, 45, -120, -210, 252, 210, -120, -45, 10, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; -1, 2, 1; -1, -3, 3, 1; 1, -4, -6, 4, 1; 1, 5, -10, -10, 5, 1; -1, 6, 15, -20, -15, 6, 1; -1, -7, 21, 35, -35, -21, 7, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
Table[Binomial[n, k]*(Cos[Pi*(n-k)/2] +Sin[Pi*(n-k)/2]), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 01 2021 *)
-
Sage
flatten([[binomial(n,k)*( cos(pi*(n-k)/2) + sin(pi*(n-k)/2) ) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 01 2021
Formula
Column k has e.g.f.: (x^k/k!)*(cos(x) + sin(x)).
T(n, k) = binomial(n,k)*(cos(Pi*(n-k)/2) + sin(Pi*(n-k)/2)).
Sum_{k=0..n} T(n, k) = A009545(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A117441(n) (upward diagonal sums).
G.f.: (1 + x - x*y)/(1 - 2*x*y + x^2*(1 + y^2)). - Stefano Spezia, Mar 10 2024