A117441
Periodic with repeating part {1,1,0,1,-1,0,-1,-1,0,-1,1,0}.
Original entry on oeis.org
1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0
Offset: 0
G.f. = 1 + x + x^3 - x^4 - x^6 - x^7 - x^9 + x^10 + x^12 + x^13 + x^15 + ...
-
a[1] := 1; a[2] := 1; a[n_] := a[n] = a[n - 2] + (-1)^(n) a[n - 1]; Array[a, 100] (* José María Grau Ribas, Jan 08 2012 *)
PadRight[{},84,{1,1,0,1,-1,0,-1,-1,0,-1,1,0}] (* Harvey P. Dale, Mar 30 2012 *)
a[ n_] := KroneckerSymbol[ -6, 2 n + 5]; (* Michael Somos, Jul 18 2015 *)
LinearRecurrence[{0, 1, 0, -1},{1, 1, 0, 1},78] (* Ray Chandler, Aug 25 2015 *)
-
Vec((1+x-x^2)/(1-x^2+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 10 2012
-
{a(n) = kronecker( -6, 2*n + 5)}; /* Michael Somos, Jul 18 2015 */
A117442
Number triangle read by rows, related to exp(x)/(cos(x) + sin(x)).
Original entry on oeis.org
1, -1, 1, 3, -2, 1, -11, 9, -3, 1, 57, -44, 18, -4, 1, -361, 285, -110, 30, -5, 1, 2763, -2166, 855, -220, 45, -6, 1, -24611, 19341, -7581, 1995, -385, 63, -7, 1, 250737, -196888, 77364, -20216, 3990, -616, 84, -8, 1, -2873041, 2256633, -885996, 232092, -45486, 7182, -924, 108, -9, 1
Offset: 0
Triangle begins
1;
-1, 1;
3, -2, 1;
-11, 9, -3, 1;
57, -44, 18, -4, 1;
-361, 285, -110, 30, -5, 1;
2763, -2166, 855, -220, 45, -6, 1;
-24611, 19341, -7581, 1995, -385, 63, -7, 1;
Second column contains
A161722 as subsequence.
-
A117442_row := proc(n) 2^n*add(binomial(n,k)*euler(k)*((x+1)/2)^(n-k), k=0..n);
seq((-1)^(n-j)*abs(coeff(%,x,j)),j=0..n) end:
seq(print(A117442_row(n)),n=0..5); # Peter Luschny, Jun 08 2013
-
row[n_] := row[n] = 2^n Sum[Binomial[n, k] EulerE[k] ((x+1)/2)^(n-k), {k, 0, n}];
T[n_, k_] := (-1)^(n-k) Abs[Coefficient[row[n], x, k]];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019, from Maple *)
Table[(-1)^(n-k)*Binomial[n, k]*Abs[Numerator[EulerE[n-k, 1/4]]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 02 2021 *)
-
E(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1); \\ A122045
p(n) = 2^n*sum(k=0, n, binomial(n,k)*E(k)*((x+1)/2)^(n-k));
row(n) = my(rp=p(n)); vector(n+1, k, k--; (-1)^(n-k)*abs(polcoeff(rp, k))); \\ Michel Marcus, Nov 16 2020
-
def f(n): return (1/4)^n*sum( binomial(n, j)*2^j*euler_number(j) for j in (0..n)) # f(n) = Euler(n, 1/4)
def A117442(n,k): return (-1)^(n+k)*binomial(n,k)*abs(numerator(f(n-k)))
flatten([[A117442(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 02 2021
A168557
Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial (-1)^n*((x + 1)^n - x^n + 1), 0 <= k <= max(0, n - 1).
Original entry on oeis.org
1, -2, 2, 2, -2, -3, -3, 2, 4, 6, 4, -2, -5, -10, -10, -5, 2, 6, 15, 20, 15, 6, -2, -7, -21, -35, -35, -21, -7, 2, 8, 28, 56, 70, 56, 28, 8, -2, -9, -36, -84, -126, -126, -84, -36, -9, 2, 10, 45, 120, 210, 252, 210, 120, 45, 10, -2, -11, -55, -165, -330, -462, -462, -330
Offset: 0
Triangle begins:
1;
-2;
2, 2;
-2, -3, -3;
2, 4, 6, 4;
-2, -5, -10, -10, -5;
2, 6, 15, 20, 15, 6;
-2, -7, -21, -35, -35, -21, -7;
2, 8, 28, 56, 70, 56, 28, 8;
-2, -9, -36, -84, -126, -126, -84, -36, -9;
2, 10, 45, 120, 210, 252, 210, 120, 45, 10;
-2, -11, -55, -165, -330, -462, -462, -330, -165, -55, -11;
2, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12;
...
-
Table[CoefficientList[(-1)^n*(x + 1)^n - (-1)^n*(x^n - 1), x], {n, 0, 12}]
-
create_list((-1)^n*binomial(n, k) + (-1)^n*kron_delta(0, k) - kron_delta(0, n), n, 0, 12, k, 0, max(0, n - 1)); /* Franck Maminirina Ramaharo, Nov 21 2018 */
Showing 1-3 of 3 results.
Comments