A117453 Perfect powers in more than one way.
1, 16, 64, 81, 256, 512, 625, 729, 1024, 1296, 2401, 4096, 6561, 10000, 14641, 15625, 16384, 19683, 20736, 28561, 32768, 38416, 46656, 50625, 59049, 65536, 83521, 104976, 117649, 130321, 160000, 194481, 234256, 262144, 279841, 331776, 390625
Offset: 1
Keywords
Examples
16 = 2^4 = 4^2.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Perfect Power
Programs
-
Mathematica
s = Split@ Sort@ Flatten@ Table[ n^i, {n, 2, Sqrt@456975}, {i, 2, Log[n, 456975]}]; Union@ Flatten@ Select[s, Length@ # > 1 &] (* Robert G. Wilson v, Apr 12 2006 *)
-
Python
from sympy import mobius, integer_nthroot, primerange def A117453(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+sum(mobius(k)*(integer_nthroot(x,k)[0]-1+sum(integer_nthroot(x,p*k)[0]-1 for p in primerange((x//k).bit_length()))) for k in range(1,x.bit_length()))) return bisection(f,n,n) # Chai Wah Wu, Nov 24 2024
Extensions
More terms from Robert G. Wilson v, Apr 12 2006
Comments