cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117453 Perfect powers in more than one way.

Original entry on oeis.org

1, 16, 64, 81, 256, 512, 625, 729, 1024, 1296, 2401, 4096, 6561, 10000, 14641, 15625, 16384, 19683, 20736, 28561, 32768, 38416, 46656, 50625, 59049, 65536, 83521, 104976, 117649, 130321, 160000, 194481, 234256, 262144, 279841, 331776, 390625
Offset: 1

Views

Author

Eric W. Weisstein, Mar 16 2006

Keywords

Comments

Corresponding values of ways for a(n) in A175066(n) for n >= 2. - Jaroslav Krizek, Jan 23 2010
Perfect powers expressible as m^k with k composite. - Charlie Neder, Mar 02 2019

Examples

			16 = 2^4 = 4^2.
		

Crossrefs

Programs

  • Mathematica
    s = Split@ Sort@ Flatten@ Table[ n^i, {n, 2, Sqrt@456975}, {i, 2, Log[n, 456975]}]; Union@ Flatten@ Select[s, Length@ # > 1 &] (* Robert G. Wilson v, Apr 12 2006 *)
  • Python
    from sympy import mobius, integer_nthroot, primerange
    def A117453(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+sum(mobius(k)*(integer_nthroot(x,k)[0]-1+sum(integer_nthroot(x,p*k)[0]-1 for p in primerange((x//k).bit_length()))) for k in range(1,x.bit_length())))
        return bisection(f,n,n) # Chai Wah Wu, Nov 24 2024

Extensions

More terms from Robert G. Wilson v, Apr 12 2006