cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A175066 a(1) = 1, for n >= 2: a(n) = number of ways h to write perfect powers A117453(n) as m^k (m >= 2, k >= 2).

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 3, 2, 5, 2, 2, 2, 2, 3, 5, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 7, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Jaroslav Krizek, Jan 23 2010

Keywords

Comments

Perfect powers with first occurrence of h >= 2: 16, 64, 65536, 4096, ... (A175065)
a(n) for n>1 is the subsequence of A253642 formed by the terms which exceed 1; equivalently, a(n)+1 for n>1 is the subsequence of A175064 formed by the terms which exceed 2. Also, sum of a(n)-1 over such n that A117453(n)<10^m gives A275358(m). - Andrey Zabolotskiy, Aug 16 2016
Numbers n such that a(n) is nonprime are 1, 26, 110, ... - Altug Alkan, Aug 22 2016

Examples

			For n = 12, A117453(12) = 4096 and a(12)=5 since there are 5 ways to write 4096 as m^k: 64^2 = 16^3 = 8^4 = 4^6 = 2^12.
729=27^2=9^3=3^6 and 1024=32^2=4^5=2^10 yield a(8)=a(9)=3. - _R. J. Mathar_, Jan 24 2010
		

Crossrefs

Cf. A117453.

Programs

  • PARI
    lista(nn) = {print1(1, ", "); for (i=2, nn, if (po = ispower(i), np = sum(j=2, po, ispower(i, j)); if (np>1, print1(np, ", "));););} \\ Michel Marcus, Mar 20 2013
    
  • Python
    from math import gcd
    from sympy import mobius, integer_nthroot, factorint, divisor_count, primerange
    def A175066(n):
        if n == 1: return 1
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+sum(mobius(k)*(integer_nthroot(x,k)[0]-1+sum(integer_nthroot(x,p*k)[0]-1 for p in primerange((x//k).bit_length()))) for k in range(1,x.bit_length())))
        return divisor_count(gcd(*factorint(bisection(f,n,n)).values()))-1 # Chai Wah Wu, Nov 24 2024

Formula

If A117453(n) = m^k with k maximal, then a(n) = tau(k) - 1. - Charlie Neder, Mar 02 2019

Extensions

Corrected and extended by R. J. Mathar, Jan 24 2010

A089579 Total number of perfect powers > 1 below 10^n.

Original entry on oeis.org

3, 11, 39, 123, 365, 1109, 3393, 10489, 32668, 102229, 320988, 1010194, 3184136, 10046919, 31723590, 100216743, 316694003, 1001003330, 3164437423, 10004650116, 31632790242, 100021566155, 316274216760, 1000100055682, 3162493192563, 10000464300849, 31623776828239, 100002154796112
Offset: 1

Views

Author

Martin Renner, Dec 29 2003

Keywords

Comments

k is a perfect power <=> there exist integers a and b, b > 1, and k = a^b.
From Robert G. Wilson v, Jul 17 2016: (Start)
Limit_{n->oo} a(n)/sqrt(10^n) = 1.
A089580(n) - a(n) = A275358(n).
The four terms which make up the difference between A089580(2) - a(2) are: 16 = 2^4 = 4^2, 64 = 2^6 = 4^3 = 8^2 and 81 = 3^4 = 9^2; one for 16, two for 64 and one for 81 making a total of 4. See A117453.
(End)

Examples

			For n=2, the 11 perfect powers > 1 below 10^2 = 100 are: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81. - _Michael B. Porter_, Jul 18 2016
		

Crossrefs

Programs

  • Mathematica
    Table[lim=10^n-1; Sum[ -(Floor[lim^(1/k)]-1)*MoebiusMu[k], {k,2,Floor[Log[2,lim]]}], {n,30}] (* T. D. Noe, Nov 16 2006 *)
  • Python
    from sympy import mobius, integer_nthroot
    def A089579(n): return int(sum(mobius(x)*(1-integer_nthroot(10**n,x)[0]) for x in range(2,(10**n).bit_length())))-1 if n>1 else 3 # Chai Wah Wu, Aug 13 2024
  • SageMath
    def A089579(n):
        gen = (p for p in srange(2, 10^n) if p.is_perfect_power())
        return sum(1 for _ in gen)
    print([A089579(n) for n in range(1, 7)])  # Peter Luschny, Sep 15 2023
    

Formula

a(n) = A070428(n) - 2 for n >= 2.

Extensions

a(9)-a(10) from Martin Renner, Oct 02 2004
More terms from T. D. Noe, Nov 16 2006
More precise name by Hugo Pfoertner, Sep 15 2023

A089580 Total number of perfect powers > 1 below 10^n, counting multiple representations separately.

Original entry on oeis.org

3, 15, 49, 143, 406, 1174, 3507, 10674, 32965, 102716, 321797, 1011533, 3186389, 10050743, 31730134, 100228040, 316713623, 1001037546, 3164497349, 10004755374, 31632975598, 100021893194, 316274794666, 1000101078148, 3162495003352, 10000467510247, 31623782520064, 100002164895587
Offset: 1

Views

Author

Martin Renner, Dec 29 2003

Keywords

Comments

From Robert G. Wilson v, Jul 17 2016: (Start)
a(n) ~ sqrt(10^n).
a(n) - A089579(n) = A275358(n).
The four terms which make up the difference a(2) - A089579(2) are: 16 = 2^4 = 4^2, 64 = 2^6 = 4^3 = 8^2 and 81 = 3^4 = 9^2; one for 16, two for 64 and one for 81 making a total of 4. See A117453.
(End)
This sequence correlates (see Link) to A006880 via a power fit A*x^B. For example, using a(23) through a(29) one obtains (A,B) = (0.047272, 1.96592) with R^2 > 0.999999. This extrapolates A006880(30) as 1.46*10^28. The exponent well may be resolving to 2. - Bill McEachen, Mar 04 2025

Examples

			16 = 2^4 = 4^2 counts double, 256 = 2^8 = 4^4 = 16^2 counts three times.
		

Crossrefs

Cf. A089579 (counting multiple representations only once).

Programs

  • Mathematica
    Table[lim=10^n-1; Sum[Floor[lim^(1/k)]-1, {k,2,Floor[Log[2,lim]]}], {n,30}] (* T. D. Noe, Nov 16 2006 *)
  • Python
    # see link.

Formula

a(n) = Sum_{k = 1..n} A060298(k). - Karl-Heinz Hofmann, Sep 18 2023

Extensions

2 more terms from Martin Renner, Oct 02 2004
More terms from T. D. Noe, Nov 16 2006
More precise name by Hugo Pfoertner, Sep 16 2023

A089361 Numbers of pairs (i, j), i, j > 1, such that i^j <= n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 15, 15, 15, 15, 15, 15
Offset: 1

Views

Author

Cino Hilliard, Dec 27 2003

Keywords

Comments

These numbers are related to the divergent series r sum(n^(1/k)) = n^(1/2) + n^(1/3) + ... + n^(1/r) for abs(n) > 0 and r=sqrt(n). Notice some numbers are missing, such as 4, 11, 12, 14.
Gaps (i.e., a(n) - a(n-1) > 1) occur for values of n > 1 in A117453. a(n) - a(n-1) = number of factors of j > 1, for the j in the pair (i,j) with the smallest value of i. Where n = A117453(x), a(n) = a(n-1) + A175066(x). For example: n = 64, a(64) = 13, a(63) = 10, 13 - 10 = 3; 64 = 2^6, 6 has three factors (2,3,6), corresponding to the three perfect powers for 64 (2^6, 4^3, 8^2). Also, A117453(3) = 64 and A175066(3) = 3. - Doug Bell, Jun 23 2015

Examples

			There are 5 perfect powers greater than 1 that are less than or equal to 16: 2^2, 2^3, 2^4, 3^2, 4^2, ergo the first 5 in the table.
		

Crossrefs

Programs

  • Maple
    N:= 1000; # to get a(1) to a(N)
    B:= Vector(N);
    for i from 2 to floor(sqrt(N)) do
      for j from 2 while i^j <= N do
        B[i^j]:= B[i^j]+1
      od
    od:
    convert(map(round,Statistics:-CumulativeSum(B)),list); # Robert Israel, Jun 24 2015
  • Mathematica
    A089361[n_] := Sum[Floor[n^(1/j)] - 1, {j, 2, BitLength[n] - 1}];
    Array[A089361, 100] (* Paolo Xausa, Jan 14 2025 *)
  • PARI
    plessn(n,m=2) = { for(k=1,n, s=0; rx = sqrtint(k); ry = logint(k,2); for(x=m,rx, for(y=2,ry, p = floor(x^y); if(p<=k,s++) ) ); print1(s", ") ) } \\ [corrected by Jason Yuen, Jan 12 2025]
    
  • PARI
    A = vector(100); for (p = 2, 6, i = 2; while (i^p <= 100, A[i^p]++; i++)); for (n = 2, 100, A[n] += A[n - 1]); \\ David Wasserman
    
  • PARI
    a(n) = sum(j=2, logint(n,2), sqrtnint(n,j)-1) \\ Jason Yuen, Jan 12 2025
    
  • Python
    from sympy import integer_nthroot
    def A089361(n): return sum(integer_nthroot(n,k)[0]-1 for k in range(2,n.bit_length())) # Chai Wah Wu, Nov 25 2024

Formula

a(1) = 0; for n > 1, if n not in A001597, a(n) = a(n-1), otherwise a(n) = a(n-1) + number of factors of j > 1 (A000005(j) - 1), for the j in the positive integer pair (i,j) where i^j = n with the smallest value of i. - Doug Bell, Jun 23 2015
a(n) = Sum_{j=2..floor(log_2(n))} floor(n^(1/j) - 1). - Robert Israel, Jun 24 2015
From Friedjof Tellkamp, Jun 14 2025: (Start)
a(n) = Sum_{k>=2..n} A259362(k), for n > 1.
G.f.: Sum_{j>=2, k>=2} x^(j^k)/(1-x). (End)

A322449 Numbers whose prime factorization contains only composite exponents.

Original entry on oeis.org

1, 16, 64, 81, 256, 512, 625, 729, 1024, 1296, 2401, 4096, 5184, 6561, 10000, 11664, 14641, 15625, 16384, 19683, 20736, 28561, 32768, 38416, 40000, 41472, 46656, 50625, 59049, 65536, 82944, 83521, 104976, 117649, 130321, 153664, 160000, 186624, 194481, 234256
Offset: 1

Views

Author

Alois P. Heinz, Dec 08 2018

Keywords

Comments

Differs from A117453 first at n = 13: a(13) = 5184 = 2^6 * 3^4, A117453(13) = 6561 = 3^8.

Examples

			5184 = 2^6 * 3^4 is a term because all exponents are composite numbers.
1 is a term, because it has no prime factorization, and "the empty set has every property". - _N. J. A. Sloane_, Aug 25 2024
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[250000],AllTrue[FactorInteger[#][[;;,2]],CompositeQ]&]] (* Harvey P. Dale, Aug 25 2024 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k in A002808} 1/p^k) = 1.1028952548... . - Amiram Eldar, Jul 02 2022

A259362 a(1) = 1, for n > 1: a(n) is the number of ways to write n as a nontrivial perfect power.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Doug Bell, Jun 24 2015

Keywords

Comments

a(n) = number of integer pairs (i,j) for distinct values of i where i > 0, j > 1 and n = i^j. Since 1 = 1^r for all real values of r, the requirement for a distinct i causes a(1) = 1 instead of a(1) = infinity.
Alternatively, the sequence can be defined as: a(1) = 1, for n > 1: a(n) = number of pairs (i,j) such that i > 0, j > 1 and n = i^j.
A007916 = n, where a(n) = 0.
A001597 = n, where a(n) > 0.
A175082 = n, where n = 1 or a(n) = 0.
A117453 = n, where n = 1 or a(n) > 1.
A175065 = n, where n > 1 and a(n) > 0 and this is the first occurrence in this sequence of a(n).
A072103 = n repeated a(n) times where n > 1.
A075802 = min(1, a(n)).
A175066 = a(n), where n = 1 or a(n) > 1. This sequence is an expansion of A175066.
A253642 = 0 followed by a(n), where n > 1 and a(n) > 0.
A175064 = a(1) followed by a(n) + 1, where n > 1 and a(n) > 0.
Where n > 1, A001597(x) = n (which implies a(n) > 0), i = A025478(x) and j = A253641(n), then a(n) = A000005(j) - 1, which is the number of factors of j greater than 1. The integer pair (i,j) comprises the smallest value i and the largest value j where i > 0, j > 1 and n = i^j. The a(n) pairs of (a,b) where a > 0, b > 1 and n = a^b are formed with b = each of the a(n) factors of j greater than 1. Examples for n = {8,4096}:
a(8) = 1, A001597(3) = 8, A025478(3) = 2, A253641(8) = 3, 8 = 2^3 and A000005(3) - 1 = 1 because there is one factor of 3 greater than 1 [3]. The set of pairs (a,b) is {(2,3)}.
a(4096) = 5, A001597(82) = 4096, A025478(82) = 2, A253641(4096) = 12, 4096 = 2^12 and A000005(12) - 1 = 5 because there are five factors of 12 greater than 1 [2,3,4,6,12]. The set of pairs (a,b) is {(64,2),(16,3),(8,4),(4,6),(2,12)}.
A023055 = the ordered list of x+1 with duplicates removed, where x is the number of consecutive zeros appearing in this sequence between any two nonzero terms.
A070428(x) = number of terms a(n) > 0 where n <= 10^x.
a(n) <= A188585(n).

Examples

			a(6) = 0 because there is no way to write 6 as a nontrivial perfect power.
a(9) = 1 because there is one way to write 9 as a nontrivial perfect power: 3^2.
a(16) = 2 because there are two ways to write 16 as a nontrivial perfect power: 2^4, 4^2.
From _Friedjof Tellkamp_, Jun 14 2025: (Start)
n:       1, 2, 3, 4, 5, 6, 7, 8, 9, ...
Squares: 1, 0, 0, 1, 0, 0, 0, 0, 1, ... (A010052)
Cubes:   1, 0, 0, 0, 0, 0, 0, 1, 0, ... (A010057)
...
Sum:    oo, 0, 0, 1, 0, 0, 0, 1, 1, ...
a(1)=1:  1, 0, 0, 1, 0, 0, 0, 1, 1, ... (= this sequence). (End)
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Sum[Boole[IntegerQ[n^(1/k)]], {k, 2, Floor[Log[2, n]]}]]; Array[a, 100] (* Friedjof Tellkamp, Jun 14 2025 *)
    a[n_] := If[n == 1, 1, DivisorSigma[0, Apply[GCD, Transpose[FactorInteger[n]][[2]]]] - 1]; Array[a, 100] (* Michael Shamos, Jul 06 2025 *)
  • PARI
    a(n) = if (n==1, 1, sum(i=2, logint(n, 2), ispower(n, i))); \\ Michel Marcus, Apr 11 2025

Formula

a(1) = 1, for n > 1: a(n) = A000005(A253641(n)) - 1.
If n not in A001597, then a(n) = 0, otherwise a(n) = A175064(x) - 1 where A001597(x) = n.
From Friedjof Tellkamp, Jun 14 2025: (Start)
a(n) = A089723(n) - 1, for n > 1.
a(n) = A010052(n) + A010057(n) + A374016(n) + (...), for n > 1.
Sum_{k>=2..n} a(k) = A089361(n), for n > 1.
G.f.: x + Sum_{j>=2, k>=2} x^(j^k).
Dirichlet g.f.: 1 + Sum_{k>=2} zeta(k*s)-1. (End)

A275358 The difference between A089580(n) and A089579(n).

Original entry on oeis.org

0, 4, 10, 20, 41, 65, 114, 185, 297, 487, 809, 1339, 2253, 3824, 6544, 11297, 19620, 34216, 59926, 105258, 185356, 327039, 577906, 1022466, 1810789, 3209398, 5691825, 10099475, 17927609, 31833805, 56541947, 100449345, 178484340, 317187186, 563744378, 1002052726
Offset: 1

Views

Author

Robert G. Wilson v, Jul 24 2016

Keywords

Comments

Submitted on the request of Omar E. Pol 17 July 2016. (A089579).
a(n) is the sum of A175066(m)-1 over such m that A117453(m)<10^n. - Andrey Zabolotskiy, Aug 17 2016

Examples

			a(2) = A089580(2)-A089579(2) = 4 because of the three terms: 16 = 2^4 = 4^2, 64 = 2^6 = 4^3 = 8^2 and 81 = 3^4 = 9^2; one for 16, two for 64 and one for 81 making a total of 4.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{lim = 10^n -1}, Sum[ (Floor[ lim^(1/k)] - 1)(1 + MoebiusMu[k]), {k, 2, Floor[ Log[2, lim]]}]]; Array[f, 36]

Formula

a(n) = A089580(n) - A089579(n).
Limit_{n->oo} a(n+1)/a(n) = 1.778279... (A011007). - Altug Alkan, Aug 22 2016

A340588 Squares of perfect powers.

Original entry on oeis.org

1, 16, 64, 81, 256, 625, 729, 1024, 1296, 2401, 4096, 6561, 10000, 14641, 15625, 16384, 20736, 28561, 38416, 46656, 50625, 59049, 65536, 83521, 104976, 117649, 130321, 160000, 194481, 234256, 262144, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1000000
Offset: 1

Views

Author

Terry D. Grant, Sep 21 2020

Keywords

Crossrefs

Cf. A153158 (complement within positive squares).

Programs

  • Maple
    q:= n-> is(igcd(seq(i[2], i=ifactors(n)[2]))<>2):
    select(q, [i^2$i=1..1000])[];  # Alois P. Heinz, Nov 26 2024
  • Mathematica
    Join[{1}, (Select[Range[2000], GCD @@ FactorInteger[#][[All, 2]] > 1 &])^2]
  • Python
    from sympy import mobius, integer_nthroot
    def A340588(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax**2 # Chai Wah Wu, Aug 14 2024

Formula

a(n) = A001597(n)^2.
a(n+1) = A062965(n) + 1. - Hugo Pfoertner, Sep 29 2020
Sum_{k>1} 1/(a(k) - 1) = 7/4 - Pi^2/6 = 7/4 - zeta(2).
Sum_{k>1} 1/a(k) = Sum_{k>=2} mu(k)*(1-zeta(2*k)).

A276108 Numbers expressible as perfect powers in a composite number of ways.

Original entry on oeis.org

1, 65536, 43046721, 68719476736, 152587890625, 2821109907456, 33232930569601, 281474976710656, 10000000000000000, 45949729863572161, 150094635296999121, 184884258895036416, 665416609183179841, 2177953337809371136, 6568408355712890625, 18446744073709551616
Offset: 1

Views

Author

Altug Alkan, Aug 27 2016

Keywords

Comments

Old title was "Values of A117453(n) such that A175066(n) is not a prime number."
Terms are 1, 2^16, 3^16, 2^36, ...
Numbers m^k, where m is not a perfect power and k is a composite number in A154893 or 0. - Charlie Neder, Mar 02 2019

Examples

			65536 = 2^16 is a term because there are 4 corresponding ways that are 2^16, 4^8, 16^4, 256^2.
		

Crossrefs

Programs

  • Python
    from sympy import mobius, integer_nthroot, isprime, divisor_count
    def A276108(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+sum(mobius(k)*(integer_nthroot(x,k)[0]-1+sum(integer_nthroot(x,i*k)[0]-1 for i in range(2,(x//k).bit_length()) if isprime(i) or isprime(divisor_count(i)-1))) for k in range(1,x.bit_length())))
        return bisection(f,n,n) # Chai Wah Wu, Nov 25 2024

Extensions

New title from Charlie Neder, Mar 04 2019
a(5)-a(16) from Chai Wah Wu, Nov 25 2024

A128993 A table which contains in each row two or more perfect powers with the same digits.

Original entry on oeis.org

125, 512, 144, 441, 169, 196, 961, 243, 324, 256, 625, 1024, 2401, 1089, 9801, 1296, 2916, 9216, 1369, 1936, 1728, 2187, 1764, 4761, 2197, 7921, 4096, 9604, 10201, 12100, 10404, 14400, 40401, 44100, 10609, 16900, 19600, 61009, 90601, 96100
Offset: 1

Views

Author

J. M. Bergot, Apr 30 2007

Keywords

Comments

Perfect powers, A001597, may have anagrams (obtained by permutation of the digits, excluding anagrams with leading zeros) which are again perfect powers. Each row of the table collects a set of at least two different anagrams which are perfect powers.
Requiring at least two different representations in a row means that numbers like 81 = 3^4 = 9^2, which are in A117453, do not necessarily populate a row on their own.
The table is sorted such that entries in the first column are increasing, and such that each perfect power appears at most once.

Examples

			The table starts with the first 11 rows as follows:
125,512; 125=5^3 and 512 = 2^9 = 8^3
144,441; 144=12^2 and 441=21^2
169,196,961; 169=13^2 and 196=14^2 and 961=31^2
243,324; 243=3^5 and 324=18^2
256,625; 256 = 16^2=4^4 and 625=25^2=5^4
1024,2401; 1024=2^10=32^2 and 2401=49^2=7^4
1089,9801; 1089=33^2 and 9801=99^2
1296,2916,9216; 1296=36^2 and 2916=54^2 and 9216=96^2
1369,1936; 1369=37^2 and 1936=44^2
1728,2187; 1728=12^3 and 2187=3^7
1764,4761; 1764=42^2 and 4761=69^2
		

Crossrefs

Cf. A117453.

Extensions

Edited, and most terms replaced by R. J. Mathar, Nov 02 2009
Showing 1-10 of 11 results. Next