cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A117453 Perfect powers in more than one way.

Original entry on oeis.org

1, 16, 64, 81, 256, 512, 625, 729, 1024, 1296, 2401, 4096, 6561, 10000, 14641, 15625, 16384, 19683, 20736, 28561, 32768, 38416, 46656, 50625, 59049, 65536, 83521, 104976, 117649, 130321, 160000, 194481, 234256, 262144, 279841, 331776, 390625
Offset: 1

Views

Author

Eric W. Weisstein, Mar 16 2006

Keywords

Comments

Corresponding values of ways for a(n) in A175066(n) for n >= 2. - Jaroslav Krizek, Jan 23 2010
Perfect powers expressible as m^k with k composite. - Charlie Neder, Mar 02 2019

Examples

			16 = 2^4 = 4^2.
		

Crossrefs

Programs

  • Mathematica
    s = Split@ Sort@ Flatten@ Table[ n^i, {n, 2, Sqrt@456975}, {i, 2, Log[n, 456975]}]; Union@ Flatten@ Select[s, Length@ # > 1 &] (* Robert G. Wilson v, Apr 12 2006 *)
  • Python
    from sympy import mobius, integer_nthroot, primerange
    def A117453(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+sum(mobius(k)*(integer_nthroot(x,k)[0]-1+sum(integer_nthroot(x,p*k)[0]-1 for p in primerange((x//k).bit_length()))) for k in range(1,x.bit_length())))
        return bisection(f,n,n) # Chai Wah Wu, Nov 24 2024

Extensions

More terms from Robert G. Wilson v, Apr 12 2006

A322448 Numbers whose prime factorization contains at least one composite exponent.

Original entry on oeis.org

16, 48, 64, 80, 81, 112, 144, 162, 176, 192, 208, 240, 256, 272, 304, 320, 324, 336, 368, 400, 405, 432, 448, 464, 496, 512, 528, 560, 567, 576, 592, 624, 625, 648, 656, 688, 704, 720, 729, 752, 768, 784, 810, 816, 832, 848, 880, 891, 912, 944, 960, 976, 1008
Offset: 1

Views

Author

Alois P. Heinz, Dec 08 2018

Keywords

Comments

The asymptotic density of this sequence is Product_{p prime} (1 - 1/p^4 + Sum_{q prime >= 5} 1/p^q - 1/p^(q-1)) = 0.05328066264472198953... (using the method of Shevelev, 2016). - Amiram Eldar, Nov 08 2020

Examples

			16 = 2^4 is a term because 4 is a composite exponent here.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
          `if`(n=1, 0, a(n-1)) while andmap(i-> i[2]=1 or
           isprime(i[2]), ifactors(k)[2]) do od; k
        end:
    seq(a(n), n=1..70);
  • Mathematica
    Select[Range[1000], AnyTrue[FactorInteger[#][[;; , 2]], CompositeQ] &] (* Amiram Eldar, Nov 08 2020 *)
  • PARI
    isok(m) = #select(x->((x>1) && !isprime(x)), factor(m)[,2]) > 0; \\ Michel Marcus, Dec 02 2020

A374588 Numbers whose maximum exponent in their prime factorization is a composite number.

Original entry on oeis.org

16, 48, 64, 80, 81, 112, 144, 162, 176, 192, 208, 240, 256, 272, 304, 320, 324, 336, 368, 400, 405, 432, 448, 464, 496, 512, 528, 560, 567, 576, 592, 624, 625, 648, 656, 688, 704, 720, 729, 752, 768, 784, 810, 816, 832, 848, 880, 891, 912, 944, 960, 976, 1008
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2024

Keywords

Comments

Subsequence of A322448 and first differs from it at n = 138: A322448(138) = 2592 = 2^5 * 3^4 is not a term of this sequence.
The asymptotic density of this sequence is d = Sum_{k composite} (1/zeta(k+1) - 1/zeta(k)) = 0.05296279266796920306... . The asymptotic density of this sequence within the nonsquarefree numbers (A013929) is d / (1 - 1/zeta(2)) = 0.13508404411123191108... .

Crossrefs

Complement of A074661 within A013929.
Subsequence of A322448 and A322449 \ {1}.
Similar sequences: A368714, A369937, A369938, A369939, A374589, A374590.

Programs

  • Maple
    filter:= proc(n) local m;
      m:= max(ifactors(n)[2][..,2]);
      m > 1 and not isprime(m)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jul 14 2024
  • Mathematica
    Select[Range[1200], CompositeQ[Max[FactorInteger[#][[;; , 2]]]] &]
  • PARI
    iscomposite(n) = n > 1 && !isprime(n);
    is(n) = n > 1 && iscomposite(vecmax(factor(n)[, 2]));

A374291 Squares of powerful numbers.

Original entry on oeis.org

1, 16, 64, 81, 256, 625, 729, 1024, 1296, 2401, 4096, 5184, 6561, 10000, 11664, 14641, 15625, 16384, 20736, 28561, 38416, 40000, 46656, 50625, 59049, 65536, 82944, 83521, 104976, 117649, 130321, 153664, 160000, 186624, 194481, 234256, 250000, 262144, 279841, 331776
Offset: 1

Views

Author

Amiram Eldar, Jul 02 2024

Keywords

Comments

First differs from A340588 at n = 12.
4-full (or 3-full) squares.
Numbers whose exponents in their prime factorization are all even numbers >= 4.
This sequence is closed under multiplication.
The sequence {A000290(n)*A078615(A000290(n)), n>=1} is a permutation of this sequence, and the sequence {a(n)/A078615(a(n)), n>=1} is a permutation of {A000290(n), n>=1}.
The sequence {A335988(n)*A007947(A335988(n)), n>=1} is a permutation of this sequence, and the sequence {a(n)/A007947(a(n)), n>=1} is a permutation of A335988.

Crossrefs

Intersection of A000290 and A036967 (or A036966).
Intersection of A000290 and A337050.
Subsequence of A322449.

Programs

  • Mathematica
    powQ[n_] := n==1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Range[600], powQ]^2
  • PARI
    is(k) = issquare(k) && ispowerful(sqrtint(k));
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A374291(n):
        def squarefreepi(n):
            return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2, 3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x, 3)[0])-l
            return c
        return bisection(f,n,n)**2 # Chai Wah Wu, Sep 10 2024

Formula

a(n) = A000290(A001694(n)) = A001694(n)^2.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p^2-1))) = zeta(4)*zeta(6)/zeta(12) = 15015/(1382*Pi^2) = 1.10082313486953808844... .
Sum_{n>=1} 1/a(n)^s = Product_{p prime} (1 + 1/(p^(2*s)*(p^(2*s)-1))) = zeta(4*s)*zeta(6*s)/zeta(12*s), for s > 1/4.
Showing 1-4 of 4 results.