cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A089579 Total number of perfect powers > 1 below 10^n.

Original entry on oeis.org

3, 11, 39, 123, 365, 1109, 3393, 10489, 32668, 102229, 320988, 1010194, 3184136, 10046919, 31723590, 100216743, 316694003, 1001003330, 3164437423, 10004650116, 31632790242, 100021566155, 316274216760, 1000100055682, 3162493192563, 10000464300849, 31623776828239, 100002154796112
Offset: 1

Views

Author

Martin Renner, Dec 29 2003

Keywords

Comments

k is a perfect power <=> there exist integers a and b, b > 1, and k = a^b.
From Robert G. Wilson v, Jul 17 2016: (Start)
Limit_{n->oo} a(n)/sqrt(10^n) = 1.
A089580(n) - a(n) = A275358(n).
The four terms which make up the difference between A089580(2) - a(2) are: 16 = 2^4 = 4^2, 64 = 2^6 = 4^3 = 8^2 and 81 = 3^4 = 9^2; one for 16, two for 64 and one for 81 making a total of 4. See A117453.
(End)

Examples

			For n=2, the 11 perfect powers > 1 below 10^2 = 100 are: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81. - _Michael B. Porter_, Jul 18 2016
		

Crossrefs

Programs

  • Mathematica
    Table[lim=10^n-1; Sum[ -(Floor[lim^(1/k)]-1)*MoebiusMu[k], {k,2,Floor[Log[2,lim]]}], {n,30}] (* T. D. Noe, Nov 16 2006 *)
  • Python
    from sympy import mobius, integer_nthroot
    def A089579(n): return int(sum(mobius(x)*(1-integer_nthroot(10**n,x)[0]) for x in range(2,(10**n).bit_length())))-1 if n>1 else 3 # Chai Wah Wu, Aug 13 2024
  • SageMath
    def A089579(n):
        gen = (p for p in srange(2, 10^n) if p.is_perfect_power())
        return sum(1 for _ in gen)
    print([A089579(n) for n in range(1, 7)])  # Peter Luschny, Sep 15 2023
    

Formula

a(n) = A070428(n) - 2 for n >= 2.

Extensions

a(9)-a(10) from Martin Renner, Oct 02 2004
More terms from T. D. Noe, Nov 16 2006
More precise name by Hugo Pfoertner, Sep 15 2023

A089580 Total number of perfect powers > 1 below 10^n, counting multiple representations separately.

Original entry on oeis.org

3, 15, 49, 143, 406, 1174, 3507, 10674, 32965, 102716, 321797, 1011533, 3186389, 10050743, 31730134, 100228040, 316713623, 1001037546, 3164497349, 10004755374, 31632975598, 100021893194, 316274794666, 1000101078148, 3162495003352, 10000467510247, 31623782520064, 100002164895587
Offset: 1

Views

Author

Martin Renner, Dec 29 2003

Keywords

Comments

From Robert G. Wilson v, Jul 17 2016: (Start)
a(n) ~ sqrt(10^n).
a(n) - A089579(n) = A275358(n).
The four terms which make up the difference a(2) - A089579(2) are: 16 = 2^4 = 4^2, 64 = 2^6 = 4^3 = 8^2 and 81 = 3^4 = 9^2; one for 16, two for 64 and one for 81 making a total of 4. See A117453.
(End)
This sequence correlates (see Link) to A006880 via a power fit A*x^B. For example, using a(23) through a(29) one obtains (A,B) = (0.047272, 1.96592) with R^2 > 0.999999. This extrapolates A006880(30) as 1.46*10^28. The exponent well may be resolving to 2. - Bill McEachen, Mar 04 2025

Examples

			16 = 2^4 = 4^2 counts double, 256 = 2^8 = 4^4 = 16^2 counts three times.
		

Crossrefs

Cf. A089579 (counting multiple representations only once).

Programs

  • Mathematica
    Table[lim=10^n-1; Sum[Floor[lim^(1/k)]-1, {k,2,Floor[Log[2,lim]]}], {n,30}] (* T. D. Noe, Nov 16 2006 *)
  • Python
    # see link.

Formula

a(n) = Sum_{k = 1..n} A060298(k). - Karl-Heinz Hofmann, Sep 18 2023

Extensions

2 more terms from Martin Renner, Oct 02 2004
More terms from T. D. Noe, Nov 16 2006
More precise name by Hugo Pfoertner, Sep 16 2023

A175066 a(1) = 1, for n >= 2: a(n) = number of ways h to write perfect powers A117453(n) as m^k (m >= 2, k >= 2).

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 3, 2, 5, 2, 2, 2, 2, 3, 5, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 7, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Jaroslav Krizek, Jan 23 2010

Keywords

Comments

Perfect powers with first occurrence of h >= 2: 16, 64, 65536, 4096, ... (A175065)
a(n) for n>1 is the subsequence of A253642 formed by the terms which exceed 1; equivalently, a(n)+1 for n>1 is the subsequence of A175064 formed by the terms which exceed 2. Also, sum of a(n)-1 over such n that A117453(n)<10^m gives A275358(m). - Andrey Zabolotskiy, Aug 16 2016
Numbers n such that a(n) is nonprime are 1, 26, 110, ... - Altug Alkan, Aug 22 2016

Examples

			For n = 12, A117453(12) = 4096 and a(12)=5 since there are 5 ways to write 4096 as m^k: 64^2 = 16^3 = 8^4 = 4^6 = 2^12.
729=27^2=9^3=3^6 and 1024=32^2=4^5=2^10 yield a(8)=a(9)=3. - _R. J. Mathar_, Jan 24 2010
		

Crossrefs

Cf. A117453.

Programs

  • PARI
    lista(nn) = {print1(1, ", "); for (i=2, nn, if (po = ispower(i), np = sum(j=2, po, ispower(i, j)); if (np>1, print1(np, ", "));););} \\ Michel Marcus, Mar 20 2013
    
  • Python
    from math import gcd
    from sympy import mobius, integer_nthroot, factorint, divisor_count, primerange
    def A175066(n):
        if n == 1: return 1
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+sum(mobius(k)*(integer_nthroot(x,k)[0]-1+sum(integer_nthroot(x,p*k)[0]-1 for p in primerange((x//k).bit_length()))) for k in range(1,x.bit_length())))
        return divisor_count(gcd(*factorint(bisection(f,n,n)).values()))-1 # Chai Wah Wu, Nov 24 2024

Formula

If A117453(n) = m^k with k maximal, then a(n) = tau(k) - 1. - Charlie Neder, Mar 02 2019

Extensions

Corrected and extended by R. J. Mathar, Jan 24 2010
Showing 1-3 of 3 results.