A117501 Triangle generated from an array of generalized Fibonacci-like terms.
1, 1, 1, 1, 2, 2, 1, 3, 3, 3, 1, 4, 4, 5, 5, 1, 5, 5, 7, 8, 8, 1, 6, 6, 9, 11, 13, 13, 1, 7, 7, 11, 14, 18, 21, 21, 1, 8, 8, 13, 17, 23, 29, 34, 34, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55, 1, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89, 1, 11, 11, 19, 26, 38, 53, 73, 97, 123, 144, 144
Offset: 1
Examples
First few rows of the array T(n,k) are: k=1 k=2 k=3 k=4 k=5 k=6 n=1: 1, 1, 2, 3, 5, 8, ... n=2: 1, 2, 3, 5, 8, 13, ... n=3: 1, 3, 4, 7, 11, 18, ... n=4: 1, 4, 5, 9, 14, 23, ... n=5: 1, 5, 6, 11, 17, 28, ... First few rows of the triangle are: 1; 1, 1; 1, 2, 2; 1, 3, 3, 3; 1, 4, 4, 5, 5; 1, 5, 5, 7, 8, 8; 1, 6, 6, 9, 11, 13, 13; 1, 7, 7, 11, 14, 18, 21, 21; ...
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
F:=Fibonacci;; Flat(List([1..15], n-> List([1..n], k-> (n-k+1)*F(k-1) + F(k-2) ))); # G. C. Greubel, Jul 13 2019
-
Magma
F:=Fibonacci; [(n-k+1)*F(k-1) + F(k-2): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 13 2019
-
Mathematica
a[n_, k_] := a[n, k] = If[k==1, 1, If[k==2, n, a[n, k-1] + a[n, k-2]]]; Table[a[n-k+1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 15 2017 *) T[n_, k_]:= n*Fibonacci[k-1] + Fibonacci[k-2]; Table[T[n-k+1, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jul 13 2019 *)
-
PARI
T(n,k) = n*fibonacci(k-1) + fibonacci(k-2); for(n=1,15, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 13 2019
-
Python
from sympy.core.cache import cacheit @cacheit def a(n, k): return 1 if k==1 else n if k==2 else a(n, k - 1) + a(n, k - 2) for n in range(1, 21): print([a(n - k + 1, k) for k in range(1, n + 1)]) # Indranil Ghosh, Aug 19 2017
-
Sage
f=fibonacci; [[(n-k+1)*f(k-1) + f(k-2) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 13 2019
Formula
The triangle by rows = antidiagonals of an array in which n-th row is generated by a Fibonacci-like operation: (1, n...then a(k+1) = a(k) + a(k-1)).
T(n,k) = n*Fibonacci(k-1) + Fibonacci(k-2). - G. C. Greubel, Jul 13 2019
Extensions
Row sums comment corrected by Philippe Deléham, Nov 18 2013
Comments