A117915 Erroneous version of A117501.
1, 1, 1, 1, 2, 2, 1, 3, 3, 3, 1, 4, 4, 5, 5, 1, 5, 5, 7, 8, 8, 1, 6, 6, 9, 11, 13, 13, 1, 7, 7, 11, 14, 18, 21, 21, 1, 8, 8, 13, 27, 23, 29, 34, 34, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Table starts: [0] 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... [1] 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... [2] 0, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... [3] 0, 1, 4, 5, 9, 14, 23, 37, 60, 97, ... [4] 0, 1, 5, 6, 11, 17, 28, 45, 73, 118, ... [5] 0, 1, 6, 7, 13, 20, 33, 53, 86, 139, ... [6] 0, 1, 7, 8, 15, 23, 38, 61, 99, 160, ... [7] 0, 1, 8, 9, 17, 26, 43, 69, 112, 181, ... [8] 0, 1, 9, 10, 19, 29, 48, 77, 125, 202, ... [9] 0, 1, 10, 11, 21, 32, 53, 85, 138, 223, ...
A := (n, k) -> ifelse(k = 0, 0, n*combinat:-fibonacci(k-1) + combinat:-fibonacci(k)): seq(seq(A(n - k, k), k = 0..n), n = 0..6); # Peter Luschny, May 28 2022
T[n_, 0]:= 0; T[n_, 1]:= 1; T[n_, 2]:= n - 1; T[n_, 3]:= n - 1; T[n_, n_]:= Fibonacci[n]; T[n_, k_]:= T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Jan 07 2017 *)
List([0..40], n-> 2*Fibonacci(n+2) -(n+2)); # G. C. Greubel, Jul 09 2019
[2*Fibonacci(n+2) -(n+2): n in [0..40]]; // G. C. Greubel, Jul 09 2019
a=0;b=1;Table[c=b+a+n; a=b; b=c, {n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2011 *) CoefficientList[Series[x*(1-x+x^2)/((1-x)^2*(1-x-x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{3,-2,-1,1},{0,1,2,5},40] (* Harvey P. Dale, Sep 06 2012 *)
my(x='x+O('x^40)); concat(0, Vec(x*(1-x+x^2)/((1-x)^2*(1-x-x^2)))) \\ G. C. Greubel, Sep 26 2017
[2*fibonacci(n+2) -(n+2) for n in (0..40)] # G. C. Greubel, Jul 09 2019
Row 5 of the triangle = (1, 1, 2, 3, 8); the first 5 Fibonacci terms with a deletion of F(5) = 5. First few rows of the triangle are: 1; 1, 2; 1, 1, 3; 1, 1, 2, 5; 1, 1, 2, 3, 8; ...
T:= function(n,k) if k=n then return Fibonacci(n+1); else return Fibonacci(k); fi; end; Flat(List([1..20], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Jul 14 2019
[k eq n select Fibonacci(n+1) else Fibonacci(k): k in [1..n], n in [1..20]]; // G. C. Greubel, Jul 10 2019
Table[If[k==n, Fibonacci[n+1], Fibonacci[k]], {n, 20}, {k, n}]//Flatten (* G. C. Greubel, Jul 10 2019 *)
T(n,k) = if(k==n, fibonacci(n+1), fibonacci(k)); \\ G. C. Greubel, Jul 10 2019
def T(n, k): if (k==n): return fibonacci(n+1) else: return fibonacci(k) [[T(n, k) for k in (1..n)] for n in (1..20)] # G. C. Greubel, Jul 10 2019
Comments