cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117724 Triangle T(n,k) = coefficient [x^n] of x^2/(1-(k+1)*x^2-x^3) for row n, and columns k = 0..n, read by rows.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 2, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 4, 9, 16, 25, 36, 49, 2, 4, 6, 8, 10, 12, 14, 16, 2, 9, 28, 65, 126, 217, 344, 513, 730, 3, 12, 27, 48, 75, 108, 147, 192, 243, 300, 4, 22, 90, 268, 640, 1314, 2422, 4120, 6588, 10030, 14674
Offset: 0

Views

Author

Roger L. Bagula, Apr 13 2006

Keywords

Examples

			The table starts:
  0;
  0,  0;
  1,  1,  1;
  0,  0,  0,  0;
  1,  2,  3,  4,   5;
  1,  1,  1,  1,   1,   1;
  1,  4,  9, 16,  25,  36,  49;
  2,  4,  6,  8,  10,  12,  14,  16;
  2,  9, 28, 65, 126, 217, 344, 513, 730;
  3, 12, 27, 48,  75, 108, 147, 192, 243, 300;
		

Crossrefs

Programs

  • Magma
    m:=12;
    R:=PowerSeriesRing(Integers(), m+2);
    A117724:= func< n, k | Coefficient(R!( x^2/(1-(k+1)*x^2-x^3) ), n) >;
    [A117724(n, k): k in [0..n], n in [0..m]]; // G. C. Greubel, Jul 23 2023
    
  • Maple
    t:=taylor(x^2/(1-(k+1)*x^2-x^3), x, 15):
    seq(seq(coeff(t,x,n), k=0..n),n=0..12); # Nathaniel Johnston, Apr 27 2011
  • Mathematica
    T[n_, k_]:= T[n, k]= Coefficient[Series[x^2/(1-(k+1)*x^2-x^3), {x,0,n+ 2}], x, n];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A117724(n, k):
        P. = PowerSeriesRing(QQ)
        return P( x^2/(1-(k+1)*x^2-x^3) ).list()[n]
    flatten([[A117724(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 23 2023

Formula

T(n,k) = coefficient [x^n] ( x^2/(1-(k+1)*x^2-x^3) ).
T(n, 0) = A000931(n+1).
T(n, 1) = A008346(n-2) = (-1)^(n-1)*A119282(n-1).
T(n, 2) = A052931(n-2).

Extensions

Sign in definition corrected, offset set to -1 by Assoc. Eds. of the OEIS, Jun 15 2010
Edited by G. C. Greubel, Jul 23 2023