A117724 Triangle T(n,k) = coefficient [x^n] of x^2/(1-(k+1)*x^2-x^3) for row n, and columns k = 0..n, read by rows.
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 2, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 4, 9, 16, 25, 36, 49, 2, 4, 6, 8, 10, 12, 14, 16, 2, 9, 28, 65, 126, 217, 344, 513, 730, 3, 12, 27, 48, 75, 108, 147, 192, 243, 300, 4, 22, 90, 268, 640, 1314, 2422, 4120, 6588, 10030, 14674
Offset: 0
Examples
The table starts: 0; 0, 0; 1, 1, 1; 0, 0, 0, 0; 1, 2, 3, 4, 5; 1, 1, 1, 1, 1, 1; 1, 4, 9, 16, 25, 36, 49; 2, 4, 6, 8, 10, 12, 14, 16; 2, 9, 28, 65, 126, 217, 344, 513, 730; 3, 12, 27, 48, 75, 108, 147, 192, 243, 300;
Links
- Nathaniel Johnston, Rows n = 0..50, flattened
Programs
-
Magma
m:=12; R
:=PowerSeriesRing(Integers(), m+2); A117724:= func< n, k | Coefficient(R!( x^2/(1-(k+1)*x^2-x^3) ), n) >; [A117724(n, k): k in [0..n], n in [0..m]]; // G. C. Greubel, Jul 23 2023 -
Maple
t:=taylor(x^2/(1-(k+1)*x^2-x^3), x, 15): seq(seq(coeff(t,x,n), k=0..n),n=0..12); # Nathaniel Johnston, Apr 27 2011
-
Mathematica
T[n_, k_]:= T[n, k]= Coefficient[Series[x^2/(1-(k+1)*x^2-x^3), {x,0,n+ 2}], x, n]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
def A117724(n, k): P.
= PowerSeriesRing(QQ) return P( x^2/(1-(k+1)*x^2-x^3) ).list()[n] flatten([[A117724(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 23 2023
Formula
Extensions
Sign in definition corrected, offset set to -1 by Assoc. Eds. of the OEIS, Jun 15 2010
Edited by G. C. Greubel, Jul 23 2023