cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A117716 Triangle T(n,k) read by rows: the coefficient [x^n] of x^2/(1-(k+1)*x-x^3) in row n, columns 0 <= k <= n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 1, 4, 9, 16, 25, 2, 9, 28, 65, 126, 217, 3, 20, 87, 264, 635, 1308, 2415, 4, 44, 270, 1072, 3200, 7884, 16954, 32960, 6, 97, 838, 4353, 16126, 47521, 119022, 264193, 534358, 9, 214, 2601, 17676, 81265, 286434, 835569, 2117656, 4815801, 10050030
Offset: 0

Views

Author

Roger L. Bagula, Apr 13 2006, corrected Apr 15 2006

Keywords

Examples

			Triangle begins as:
  0;
  0,  0;
  1,  1,   1;
  1,  2,   3,    4;
  1,  4,   9,   16,   25;
  2,  9,  28,   65,  126,  217;
  3, 20,  87,  264,  635, 1308,  2415;
  4, 44, 270, 1072, 3200, 7884, 16954, 32960;
		

Crossrefs

Cf. A000930 (column 0), A008998 (column 1), A052541 (column 2), A052927 (column 3), A001093 (row 5), A185065 (row 6), A117715, A117724.

Programs

  • Magma
    m:=12;
    R:=PowerSeriesRing(Integers(), m+2);
    A117716:= func< n,k | Coefficient(R!( x^2/(1-(k+1)*x-x^3) ), n) >;
    [[A117716(n,k): k in [0..n]]: n in [0..m]]; // G. C. Greubel, Jul 23 2023
    
  • Maple
    A117716 := proc(n,m)
            x^2/(1-(m+1)*x-x^3) ;
            if n < 0 then
                    0;
            else
                    coeftayl(%,x=0,n) ;
            end if;
    end proc: # R. J. Mathar, May 14 2013
  • Mathematica
    T[n_, k_]:= T[n, k]= Coefficient[Series[x^2/(1-(k+1)*x-x^3), {x,0,n+ 2}], x, n];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A117716(n,k):
        P. = PowerSeriesRing(QQ)
        return P( x^2/(1-(k+1)*x-x^3) ).list()[n]
    flatten([[A117716(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 23 2023

Extensions

Edited by G. C. Greubel, Jul 23 2023
Showing 1-1 of 1 results.