cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117866 Number of palindromes (in base 7) below 7^n.

Original entry on oeis.org

6, 12, 54, 96, 390, 684, 2742, 4800, 19206, 33612, 134454, 235296, 941190, 1647084, 6588342, 11529600, 46118406, 80707212, 322828854, 564950496, 2259801990, 3954653484, 15818613942, 27682574400, 110730297606, 193778020812, 775112083254, 1356446145696
Offset: 1

Views

Author

Martin Renner, May 02 2006

Keywords

Crossrefs

Cf. A050250.

Programs

  • Magma
    [IsOdd(n) select 8*7^((n-1) div 2)-2 else 2*7^(n div 2)-2: n in [1..30]]; // Vincenzo Librandi, Oct 29 2016
    
  • Mathematica
    Table[If[OddQ[n],8*7^((n-1)/2)-2,2*7^(n/2)-2],{n,30}] (* or *) LinearRecurrence[{1,7,-7},{6,12,54},30] (* Harvey P. Dale, Oct 31 2013 *)
    Rest@ CoefficientList[Series[6 x (x + 1)/((x - 1) (7 x^2 - 1)), {x, 0, 28}], x] (* Michael De Vlieger, Oct 31 2016 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -7,7,1]^(n-1)*[6;12;54])[1,1] \\ Charles R Greathouse IV, Oct 31 2016

Formula

a(n) = 8*7^((n-1)/2)-2 (n odd), 2*7^(n/2)-2 (n even).
G.f.: 6*x*(x+1) / ((x-1)*(7*x^2-1)). - Colin Barker, Feb 15 2013
From G. C. Greubel, Oct 27 2016: (Start)
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3).
a(n) = (1/sqrt(7))*(-2*sqrt(7) + 7^((n+1)/2) + (-1)^n*7^((n+1)/2) + 4*7^(n/2) - 4*(-1)^n*7^(n/2)).
E.g.f.: (1/sqrt(7))*( (sqrt(7) - 4)*exp(-sqrt(7)*x) + (4 + sqrt(7))*exp(sqrt(7)*x) - 2*sqrt(7)*exp(x)). (End)

Extensions

More terms from Colin Barker, Feb 15 2013